1)
3/4x +2 = -2
2)
(2x + 1) (-2x+2) (-x+1)
3)
a4a2 / a3 =
Algebra
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
1)
Løs likningen:
[tex]\frac{3}{4x} +2 = -2 \ \ | \ \cdot 4x[/tex]
[tex]\frac{3 \cdot 4x}{4x} + 2 \cdot 4x= -2 \cdot 4x[/tex]
[tex]\frac{3 \cdot \cancel{4x}}{\cancel{4x}} + 8x= -8x[/tex]
[tex]3 + 8x= -8x[/tex]
[tex]8x + 8x = -3[/tex]
[tex]16x = -3[/tex]
[tex]\underline{\underline{x = - \frac{3}{16}}[/tex]
_______________________________________________________________________________
2)
Skriv enklest mulig:
[tex](2x + 1)(-2x+2)(-x+1) = (-4x^2 + 4x - 2x +2)(-x+1) = (-4x^2 + 2x +2)(-x+1)[/tex]
[tex] = 4x^3 - 2x^2 - 2x - 4x^2 + 2x +2 = \underline{\underline{4x^3 -6x^2 + 2}}[/tex]
_______________________________________________________________________________
3)
Skriv enklest mulig:
[tex]\frac{a^4a^2}{a^3} = a^{4+2-3} = \underline{\underline{a^3 }}[/tex]
Løs likningen:
[tex]\frac{3}{4x} +2 = -2 \ \ | \ \cdot 4x[/tex]
[tex]\frac{3 \cdot 4x}{4x} + 2 \cdot 4x= -2 \cdot 4x[/tex]
[tex]\frac{3 \cdot \cancel{4x}}{\cancel{4x}} + 8x= -8x[/tex]
[tex]3 + 8x= -8x[/tex]
[tex]8x + 8x = -3[/tex]
[tex]16x = -3[/tex]
[tex]\underline{\underline{x = - \frac{3}{16}}[/tex]
_______________________________________________________________________________
2)
Skriv enklest mulig:
[tex](2x + 1)(-2x+2)(-x+1) = (-4x^2 + 4x - 2x +2)(-x+1) = (-4x^2 + 2x +2)(-x+1)[/tex]
[tex] = 4x^3 - 2x^2 - 2x - 4x^2 + 2x +2 = \underline{\underline{4x^3 -6x^2 + 2}}[/tex]
_______________________________________________________________________________
3)
Skriv enklest mulig:
[tex]\frac{a^4a^2}{a^3} = a^{4+2-3} = \underline{\underline{a^3 }}[/tex]
Jeg er fortsatt litt usikker på hva du mener oppgaven er i 1), kanskje er den slik:
Løs likningen:
[tex]\frac{3}{4}x +2 = -2 \ \ ?[/tex]
Da er løsningen:
[tex]\frac{3}{4}x = -2 - 2[/tex]
[tex]\frac{3}{4}x = -4[/tex]
[tex]x = -4 \cdot \frac{4}{3}[/tex]
[tex]\underline{\underline{x = -\frac{16}{3}}}[/tex]
Løs likningen:
[tex]\frac{3}{4}x +2 = -2 \ \ ?[/tex]
Da er løsningen:
[tex]\frac{3}{4}x = -2 - 2[/tex]
[tex]\frac{3}{4}x = -4[/tex]
[tex]x = -4 \cdot \frac{4}{3}[/tex]
[tex]\underline{\underline{x = -\frac{16}{3}}}[/tex]