Egenvektorer

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
titaniumman
Pytagoras
Pytagoras
Posts: 9
Joined: 04/05-2017 12:50

Hei, kan noen forklare hvordan man kommer frem til [tex]\vec{x}_1{}[/tex] og [tex]\vec{x}_2{}[/tex] gitt dette løsningsforslaget?
egenvektorer.jpg
egenvektorer.jpg (275 KiB) Viewed 1424 times
Fysikkmann97
Lagrange
Lagrange
Posts: 1258
Joined: 23/04-2015 23:19

Matrisen for [tex]\lambda_1 = 1[/tex] gir den reduserte matrisen

[tex]\begin{pmatrix} 6 & -4 & 4 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}[/tex].

Man ser da at $x_3$ kan velges fritt, f.eks. $x_3 = t$ (dette fordi man ved videre eliminasjon ikke vil få en ledende ener på nederste rad. Da får man $x_1 = -2t$ av rad nummer to, og $-12t -4x_2 + 4t = 0 \Rightarrow x_2 = -2t$ fra første rad

Man får da at $\vec x = t\begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$ Lar t = -1 og får $\vec x = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$

For å finne egenverdiene løser man $\det(A - \lambda I) = 0$.
Da vil man alltid få en rad med bare nuller nederst, og man vil da få uendelig mange løsninger, som da t'en indikerer.
Post Reply