Denne differensiallikningen :
x[sup]2[/sup]y + y' =0
Kan skrives som :
x[sup]2[/sup][sigma]c[sub]i[/sub]x[sup]i [/sup][/sigma] + [sigma] i*c[sub]i[/sub]x[sup]i-1[/sup][/sigma] = 0
Utfordringen blir å skrive :
x[sup]2[/sup][sigma]c[sub]i[/sub]x[sup]i[/sup][/sigma] + [sigma] i*c[sub]i [/sub]x[sup]i-1[/sup][/sigma] på formen [sigma]a[sub]n [/sub]x[sup]m[/sup][/sigma] ,alstå som ei potensrekke.
"i" går fra 1 til uendelig. "m" og "n" er avhengig av "i".
Regning ned summetegn
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
x[sup]2[/sup][sigma][/sigma][sub]i=0[/sub]c[sub]i[/sub]*x[sup]i[/sup] + [sigma][/sigma][sub]i=1[/sub]i*c[sub]i[/sub]*x[sup]i-1[/sup] = [sigma][/sigma][sub]i=0[/sub]c[sub]i[/sub]*x[sup]i+2[/sup] + [sigma][/sigma][sub]j=0[/sub](j+1)*c[sub]j+1[/sub]*x[sup]j[/sup]
= c[sub]1[/sub] + c[sub]2[/sub]x + [sigma][/sigma][sub]j=2[/sub]c[sub]j-2[/sub]*x[sup]j[/sup] + [sigma][/sigma][sub]j=2[/sub](j+1)*c[sub]j+1[/sub]*x[sup]j[/sup]
= c[sub]1[/sub] + c[sub]2[/sub]x + [sigma][/sigma][sub]j=2[/sub](c[sub]j-2[/sub] + (j+1)*c[sub]j+1[/sub])*x[sup]j[/sup].
...
= c[sub]1[/sub] + c[sub]2[/sub]x + [sigma][/sigma][sub]j=2[/sub]c[sub]j-2[/sub]*x[sup]j[/sup] + [sigma][/sigma][sub]j=2[/sub](j+1)*c[sub]j+1[/sub]*x[sup]j[/sup]
= c[sub]1[/sub] + c[sub]2[/sub]x + [sigma][/sigma][sub]j=2[/sub](c[sub]j-2[/sub] + (j+1)*c[sub]j+1[/sub])*x[sup]j[/sup].
...