Pytagoras

Her kan du stille spørsmål om oppgaver i matematikk på ungdomsskole og barneskole nivå. Alle som føler at de kan bidra er velkommen til å svare.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
sleiken55
Fibonacci
Fibonacci
Posts: 3
Joined: 23/04-2003 15:14

Når jeg har en 30-60-90 grader trekant. Jeg vet hva den lengste kateten er, men ingen av de andre sidene. Åssen skal jeg da finne ut de andre sidene???
Vegard, VK1 - 2MX
Cayley
Cayley
Posts: 52
Joined: 19/04-2003 19:13
Location: Mo i Rana

Når vi har med denne typen trekant å gjøre:

"I en rettvinklet trekant der vinklene er 30° ,60° og 90° vil alltid hypotenusen være dobbelt så lang som det korteste katetet. Det korteste katetet vil alltid være det motstående til vinkelen på 30°. Dette medfører blant annet at vi er i stand til å finne to sider i en rettvinklet trekant, når betingelsene er som over og vi kjenner en side. "

Se http://www.matematikk.net/geometri2/geometri2.html, her er det også eksempel likninger.

Alt er utledet fra hypotenus[sup]2[/sup] = katet[sup]2[/sup] + katet[sup]2[/sup].

I tillegg til refferansen vil jeg gi et tips:

* Hjelpelinjer: Hvis du f.eks har en trekant med alle vinkler satt til 60 grader, kan du trekke ned en normal på et linjestykke slik at du får to trekanter á 30, 60 og 90 grader (husk at vinkelsummen i en trekant alltid er 180 grader). Hvis du vet det minste katetet i en av de to trekantene kan du f.eks. finne ut alle sidene og arealet av trekanten.

* Spør læreren/se i boka etter slike oppgaver, og bruk forumet/læreren om du lurer på noe!

Lykke til med denne spesielle trekant-typen!
Last edited by Vegard, VK1 - 2MX on 23/04-2003 16:33, edited 4 times in total.
"Rør ikke mine sirkler", Arkimedes.
administrator
Sjef
Sjef
Posts: 893
Joined: 25/09-2002 21:23
Location: Sarpsborg

Hei!
I en 30-60-90 trekant gjeder det at hypotenusen er dobbelt så lang som korteste kartet. Kjenner du ingen av disse har du et problem :!:
MVH
Kenneth Marthinsen
PeerGynt
World works; done by its invalids
World works; done by its invalids
Posts: 389
Joined: 25/09-2002 21:50
Location: Kristiansand

Du kan bruke sin og tan for å regne ut sidene i trekanten.

La oss kalle den kjente karteten a. Ettersom a er lenger enn den ukjente kateten kan vi si at den ukjente karteten er motstående til vinkelen på 30°. De grunnleggende definisjonene av cos og tan gir da:

cos(30) = a/hypotenus
tan(30) = kartet/a

slik at:

hypotenus = a/cos(30)
kartet = a * tan(30)

PS: Du kan fra dette se at hypotenusen er dobbelt så lang som korteste kartet:
hypotenus/kartet = [a/cos(30)] / [a*tan(30)] = 1/sin(30) = 1/0.5 = 2
Last edited by PeerGynt on 23/04-2003 17:08, edited 1 time in total.
administrator
Sjef
Sjef
Posts: 893
Joined: 25/09-2002 21:23
Location: Sarpsborg

Det er nok en del som "henger i luften" her. Først; hvilke klasse går du i? Dersom du går på U skolen kjenner du bare Pytagoras og ikke de trigonometriske funksjonene. Hva med å dele oppgaven i sin helhet med oss?
MVH
KM
Guest

Vet det antageligvis er litt for sent å svare nå, men i tilfelle andre ungdommer lurer har jeg svar:

Du tar den lengste katetens lengde, og bruker den slik( hvis den f.eks. er 8cm):

8(iandre)+k(iandre)=h(iandre)
64+k(iandre)=2k(iandre)
64+k(iandre)=4k(iandre)
64=4k(iandre)-k(iandre)
64=3k(iandre)
64:3=3k(iandre):3
21,333=k(iandre)
(KVADRATROT) 21,333= (KVADRATROT) k(iandre)
4,6=k

Så her får du vite -- korteste katet= 4,6cm og hypotenus=21,333cm
jonaskleiv

Riktig regnet ut, men svaret blir feil som de andre har skrevet så er hypotenusen det dobbelte av korteste katet og ikke den korteste kateten iandre hypotenusen blir derfor 9,2 cm istedet, men ellers et veldig godt svar :wink: :!:
Nanette

Gjest wrote:Vet det antageligvis er litt for sent å svare nå, men i tilfelle andre ungdommer lurer har jeg svar:

Du tar den lengste katetens lengde, og bruker den slik( hvis den f.eks. er 8cm):

8(iandre)+k(iandre)=h(iandre)
64+k(iandre)=2k(iandre)
64+k(iandre)=4k(iandre)
64=4k(iandre)-k(iandre)
64=3k(iandre)
64:3=3k(iandre):3
21,333=k(iandre)
(KVADRATROT) 21,333= (KVADRATROT) k(iandre)
4,6=k

Så her får du vite -- korteste katet= 4,6cm og hypotenus=21,333cm

Hei! Hvorfor setter du inn 2 og 4 i andre og tredje ledd foran k i andre?
Post Reply