Kan noen hjelpe meg med fasitsvar på eksamen?
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
Du kan jo vise svarene dine her, så vil sikkert noen bekrefte eller avkrefte svarenes validitet. Dessuten kan disse lett sjekkes ved hjelp av en kalkulator.
1a)
[tex]-x-1 = \sqrt{x+7} \ \Rightarrow \ (-x-1)^2 = x+7[/tex]
[tex]x^2+2x+1 = x+7 \ \Rightarrow \ x^2+x-6 = 0[/tex]
[tex]x = -3 \ \vee \ x = 2[/tex]
Setter prøve: [tex]x=-3 \ , \ \rm{VS:} 2 \ , \ \rm{HS:} 2 \ \rm{OK}[/tex]
[tex]x=2 \ , \ \rm{VS:} -3 \ , \ \rm{HS:} 3 \ \rm{Feil}[/tex]
[tex]\rm{Svar:} \ \underline{\underline{x=-3}}[/tex]
b)
[tex]2 \ \cdot \ 3^x = 5 \ \Rightarrow \ 3^x = \frac{5}{2}[/tex]
[tex]x = \frac{\ln{5}-\ln{2}}{\ln{3}}[/tex]
c)
[tex]6\cos{v} + 4 = 1 \ \Rightarrow \ \cos{v} = -\frac{1}{2}[/tex]
[tex]v = \frac{2\pi}{3} + n2\pi \ \vee \ v = \frac{7\pi}{6} + n2\pi[/tex]
Eller i grader: [tex]v = 120^{\circ} + n360^{\circ} \ \vee \ v = 210^{\circ} + n360^{\circ}[/tex]
d)
[tex]\frac{x+3}{x} < \frac{x+1}{x+2}[/tex]
[tex]\frac{x+3}{x} - \frac{x+1}{x+2} < 0[/tex]
[tex]\frac{(x+3)(x+2)-(x+1)x}{x(x+2)} < 0[/tex]
[tex]\frac{4x+6}{x(x+2)} < 0[/tex]
Fortegnsskjema gir:
[tex]x \in (-\infty , -2) \ \vee \ x \in (-\frac{6}{4},0)[/tex]
e)
[tex]x^2-2x+4 > x+2[/tex]
[tex]x^2-3x+2 > 0[/tex]
[tex](x-1)(x-2) > 0[/tex]
Fortegnsskjema gir:
[tex]x \in (-\infty ,1) \ \vee \ x \in (2,\infty )[/tex]
Fort å gæli detta!
[tex]-x-1 = \sqrt{x+7} \ \Rightarrow \ (-x-1)^2 = x+7[/tex]
[tex]x^2+2x+1 = x+7 \ \Rightarrow \ x^2+x-6 = 0[/tex]
[tex]x = -3 \ \vee \ x = 2[/tex]
Setter prøve: [tex]x=-3 \ , \ \rm{VS:} 2 \ , \ \rm{HS:} 2 \ \rm{OK}[/tex]
[tex]x=2 \ , \ \rm{VS:} -3 \ , \ \rm{HS:} 3 \ \rm{Feil}[/tex]
[tex]\rm{Svar:} \ \underline{\underline{x=-3}}[/tex]
b)
[tex]2 \ \cdot \ 3^x = 5 \ \Rightarrow \ 3^x = \frac{5}{2}[/tex]
[tex]x = \frac{\ln{5}-\ln{2}}{\ln{3}}[/tex]
c)
[tex]6\cos{v} + 4 = 1 \ \Rightarrow \ \cos{v} = -\frac{1}{2}[/tex]
[tex]v = \frac{2\pi}{3} + n2\pi \ \vee \ v = \frac{7\pi}{6} + n2\pi[/tex]
Eller i grader: [tex]v = 120^{\circ} + n360^{\circ} \ \vee \ v = 210^{\circ} + n360^{\circ}[/tex]
d)
[tex]\frac{x+3}{x} < \frac{x+1}{x+2}[/tex]
[tex]\frac{x+3}{x} - \frac{x+1}{x+2} < 0[/tex]
[tex]\frac{(x+3)(x+2)-(x+1)x}{x(x+2)} < 0[/tex]
[tex]\frac{4x+6}{x(x+2)} < 0[/tex]
Fortegnsskjema gir:
[tex]x \in (-\infty , -2) \ \vee \ x \in (-\frac{6}{4},0)[/tex]
e)
[tex]x^2-2x+4 > x+2[/tex]
[tex]x^2-3x+2 > 0[/tex]
[tex](x-1)(x-2) > 0[/tex]
Fortegnsskjema gir:
[tex]x \in (-\infty ,1) \ \vee \ x \in (2,\infty )[/tex]
Fort å gæli detta!