Posted: 24/08-2007 00:31
[tex]I \qquad = \qquad \frac{1}{4} \Im \left( \int e^{(\ln (5) +1 +i)x} \rm{d}x \right) \qquad = \qquad \frac{1}{4} \Im \left( \frac{e^{(\ln (5) +1 +i)x}}{\ln(5) + 1 + i} \right) + C \qquad = \qquad \frac{1}{4} \Im \left( \frac{\ln(5) + 1 - i}{\ln(5)^2 + 2\ln(5) + 2}5^x e^x e^{ix} \right) + C \\ = \qquad \frac{5^x e^x}{4\ln (5)^2 + 8 \ln(5) + 8} \left(\ln(5e)\sin(x) -\cos(x) \right) + C [/tex]Jarle10 wrote: [tex]I = \int \frac{5^x \cdot e^x \cdot sin(x)}{4} dx[/tex]