Posted: 23/08-2007 18:12
Denne er i grunnen grei. Det er bare å gå rett på.
[tex]I \qquad = \qquad \int 2x^3 \left( \sin(x)+\cos(x) \right) \rm{d}x \qquad = \qquad \Re \left( \int 2x^3(1-i)e^{ix} \rm{d}x \right)[/tex]
Vi tar for oss [tex]I ^\prime \qquad = \qquad \int x^3e^{ix} \rm{d}x[/tex] med tabellarisk delvis integrasjon.
[tex]\begin{tabular}{c c} \rm{derivert} & \rm{integrert}\\x^3 & e^{ix} \\ 3x^2 & -ie^{ix} \\ 6x & -e^{ix} \\6 & i e^{ix} \\ 0 & e^{ix} \end{tabular}[/tex]
Dermed:
[tex]I^\prime \qquad = \qquad \left( -ix^3 +3x^2 + 6ix - 6 \right)e^{ix} + C [/tex]
Og:
[tex]I \qquad = \qquad \Re \left( 2(1-i)(-ix^3 +3x^2 + 6ix - 6)e^{ix} \right) + C \\ = \qquad \Re \left( \left(-2x^3 +6x^2 + 12x -12 - (2x^3 + 6x^2 - 12x -12)i \right)e^{ix} \right) + C \\ = \qquad \left(-2x^3 +6x^2 + 12x -12 \right) \cos(x) + \left(2x^3 + 6x^2 - 12x -12 \right) \sin(x) + C[/tex]
Nytt integral:
[tex]I \qquad = \qquad\int \frac{xe^{x}}{(x+1)^2} \rm{d}x[/tex]
[tex]I \qquad = \qquad \int 2x^3 \left( \sin(x)+\cos(x) \right) \rm{d}x \qquad = \qquad \Re \left( \int 2x^3(1-i)e^{ix} \rm{d}x \right)[/tex]
Vi tar for oss [tex]I ^\prime \qquad = \qquad \int x^3e^{ix} \rm{d}x[/tex] med tabellarisk delvis integrasjon.
[tex]\begin{tabular}{c c} \rm{derivert} & \rm{integrert}\\x^3 & e^{ix} \\ 3x^2 & -ie^{ix} \\ 6x & -e^{ix} \\6 & i e^{ix} \\ 0 & e^{ix} \end{tabular}[/tex]
Dermed:
[tex]I^\prime \qquad = \qquad \left( -ix^3 +3x^2 + 6ix - 6 \right)e^{ix} + C [/tex]
Og:
[tex]I \qquad = \qquad \Re \left( 2(1-i)(-ix^3 +3x^2 + 6ix - 6)e^{ix} \right) + C \\ = \qquad \Re \left( \left(-2x^3 +6x^2 + 12x -12 - (2x^3 + 6x^2 - 12x -12)i \right)e^{ix} \right) + C \\ = \qquad \left(-2x^3 +6x^2 + 12x -12 \right) \cos(x) + \left(2x^3 + 6x^2 - 12x -12 \right) \sin(x) + C[/tex]
Nytt integral:
[tex]I \qquad = \qquad\int \frac{xe^{x}}{(x+1)^2} \rm{d}x[/tex]