Bestemt integrasjon! Trenger litt hjelp:-o

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
onkelskrue
Dirichlet
Dirichlet
Posts: 172
Joined: 22/08-2008 15:16

Hey, satt meg litt fast på denne integrasjons oppgaven.

(øvre grense 1, nedre grense 0)
(1, 0) ∫

(1, 0)∫1/1+√1 dx


velger u = 1+√x

du/dx = 1/2√x..............du = 1/2√x dx...............2√x du = dx

x = 0 → u = 1+√0 = 1
x = 1 → u = 1 + √1 = 2

(2, 1)∫1/1+√1 dx = (2, 1)∫ 1/u * 2√x du = 2 (2, 1)∫ √x / 1+ √x du

Er jeg på rett vei, eller har jeg rota litt her
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

prøvde å lese men mye surr når det skrives sånn..

[tex]\int_0^1 \frac{1}{1+\sqrt{x}}dx[/tex]?
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
onkelskrue
Dirichlet
Dirichlet
Posts: 172
Joined: 22/08-2008 15:16

meCarnival wrote:prøvde å lese men mye surr når det skrives sånn..

[tex]\int_0^1 \frac{1}{1+\sqrt{x}}dx[/tex]?
Det er helt sant, men du klarte å tyde det:-) Helt rett.
zell
Guru
Guru
Posts: 1777
Joined: 09/02-2007 15:46
Location: Trondheim

Klassisk vgs-integral.

[tex]\int_0^1\frac{\rm{d}x}{1+\sqrt{x}}[/tex]

[tex]u = 1+\sqrt{x} \ \Rightarrow \ \frac{\rm{d}u}{\rm{d}x} = \frac{1}{2\sqrt{x}} \ \Rightarrow \ 2(u-1)\rm{d}u = \rm{d}x[/tex]

Nye grenser: u = 1 -> u = 2

[tex]\int_1^2\frac{2u-2}{u}\rm{d}u = \int_1^2 2\rm{d}u - \int_1^2 \frac{2}{u}\rm{d}u = \left[2u\right]_1^2 - \left[\ln{|u|}\right]_1^2[/tex]
drgz
Fermat
Fermat
Posts: 757
Joined: 24/12-2008 23:22

zell var raskere gitt :)
onkelskrue
Dirichlet
Dirichlet
Posts: 172
Joined: 22/08-2008 15:16

zell wrote:Klassisk vgs-integral.

[tex]\int_0^1\frac{\rm{d}x}{1+\sqrt{x}}[/tex]

[tex]u = 1+\sqrt{x} \ \Rightarrow \ \frac{\rm{d}u}{\rm{d}x} = \frac{1}{2\sqrt{x}} \ \Rightarrow \ 2(u-1)\rm{d}u = \rm{d}x[/tex]

Nye grenser: u = 1 -> u = 2

[tex]\int_1^2\frac{2u-2}{u}\rm{d}u = \int_1^2 2\rm{d}u - \int_1^2 \frac{2}{u}\rm{d}u = \left[2u\right]_1^2 - \left[\ln{|u|}\right]_1^2[/tex]
Ser ikke helt hvordan det blir

2(u-1)du=dx :-o :-o
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Du har jo at [tex]u = \sqrt x + 1[/tex]

Bare flytt over 1 så har du at [tex]\sqrt x = u - 1[/tex]
Elektronikk @ NTNU | nesizer
Tore Tangens
Dirichlet
Dirichlet
Posts: 199
Joined: 23/05-2008 16:44
Location: Bebyggelse

hvordan og kanskje hvorfor finner man nye grenser her?
[tex]\sqrt{Alt \hspace9 ondt}[/tex]
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Grensene endres fordi du nå har et integral med hensyn på en annen variabel, u. Da må du finne hva grensene for x svarer til for u. Det gjør du ved å sette inn x-verdiene i ligningen for u.

Et annet alternativ er å finne det ubestemte integralet (altså integrere uten grensene), for så å rekne ut integralet med hensyn på x etterpå:

[tex]\int_{0}^1 \frac{dx}{1+\sqrt x} = [2(1+ \sqrt x)]_0^1 - \left[\ln|1+\sqrt x|\right]_0^1[/tex]

Svaret blir såklart det samme. Men velger du å gjøre det på denne måten så må du finne det ubestemte integralet først, for så å rekne ut det bestemte etterpå. Hvis du velger å bevare grensene under utrekningen av integralet, må du endre grenser når du substituerer.
Elektronikk @ NTNU | nesizer
Post Reply