vis at kurven til et polarkoordinatsystem med r=1 + sin(teta) er gitt ved likningen x^2 + y^2- y= [symbol:rot] (x^2 + y^2).
Jeg brukte 0,3927 som vinkelenhet
Algebra
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
[tex]x^2+y^2-y = \sqrt{x^2+y^2}[/tex]
[tex]r^2 - r\sin{\theta} = r[/tex]
[tex](1+\sin{\theta})^2 - (1+\sin{\theta})\sin{\theta} = r[/tex]
[tex]1 + 2\sin{\theta} + \sin^2{\theta} - \sin{\theta} - \sin^2{\theta} = r[/tex]
[tex]1+\sin{\theta} = r[/tex]
[tex]r = 1+\sin{\theta}[/tex]
[tex]r^2 - r\sin{\theta} = r[/tex]
[tex](1+\sin{\theta})^2 - (1+\sin{\theta})\sin{\theta} = r[/tex]
[tex]1 + 2\sin{\theta} + \sin^2{\theta} - \sin{\theta} - \sin^2{\theta} = r[/tex]
[tex]1+\sin{\theta} = r[/tex]
[tex]r = 1+\sin{\theta}[/tex]