Hvordan se at sin(pi/4)+cos(pi/4) = sqrt(2) ?

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
Teddy
Cayley
Cayley
Posts: 79
Joined: 21/08-2006 17:44

Skal regne ut sin(pi/4) + cos(pi/4).

Ser at sin(pi/4) = cos(pi/4) og at man kan skrive det som f.eks. 2cos(pi/4).

Om jeg regner ut 2cos(pi/4) får jeg 1.4142... som er [symbol:rot]2. Greit å se det når jeg har fasit, men hvordan skulle jeg regnet meg fram til dette langt mer presise [symbol:rot]2 ?
Fysikk og kjemi?
http://realisten.com
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

[tex]\frac{\pi}{4}[/tex] er som du sikkert vet 45 grader. Hvis du tegner opp en likebeinet, rettvinklet trekant, altså en trekant med vinkler 45-45-90, ser du kanskje at de to katetene er like lange. Hvis vi sier at katetene har lengde 1, vil hypotenusen da, av pytagoras-setningen, ha lengde [tex]\sqrt{1+1} = \sqrt{2}[/tex]. Cosinus til en vinkel i en rettvinklet trekant er definert som vedliggende katet delt på hypotenus. Vedliggende katet til vinkelen på 45 grader er 1, og hypotenusens lengde er altså [tex]\sqrt{2}[/tex]. Cosinusverdien blir da:

[tex]\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt 2} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}[/tex]

Og når du ganger med 2 står du selvsagt igjen med [tex]\sqrt 2[/tex].
Last edited by Vektormannen on 29/03-2008 12:49, edited 1 time in total.
Elektronikk @ NTNU | nesizer
Teddy
Cayley
Cayley
Posts: 79
Joined: 21/08-2006 17:44

At jeg kan glemme eksakte vinkelmål...

Takk :)
Fysikk og kjemi?
http://realisten.com
Post Reply