Ny oppgave:
Finn likningen for tangenten til kurven i punktet definert av t-verdien. Også finn verdien av [tex]d^2y/dx^2[/tex] i dette punktet.
[tex]x = t - sin t, y = 1 - cos t, t ={\pi}/3[/tex]
Matte 1-oppgave, derivasjon
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Her må du først finne stigningstallet, det er gitt ved:
[tex]a=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]
[tex]\frac{dx}{dt}=1-\cos t[/tex]
[tex]\frac{dy}{dt}=\sin t[/tex]
[tex]a=\frac{\sin t}{1-\cos t}=\frac{\frac{\sqr3}2}{1-\frac12}=\sqr3[/tex]
[tex]y-y_1=a(x-x_1)[/tex]
[tex]y=a(x-(t-\sin t))+(1-\cos t)[/tex]
[tex]y=\sqr3(x-(\frac{\pi}3-\frac{\sqr3}{2}))+(1-\frac12)[/tex]
[tex]y=\sqr3x-\frac{\pi\sqr3}3+\frac32+\frac12[/tex]
[tex]y=\sqr3x-\frac{\pi\sqr3}3+2=\sqr3x+2-\frac{\pi}{\sqr3}[/tex]
[tex]a=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]
[tex]\frac{dx}{dt}=1-\cos t[/tex]
[tex]\frac{dy}{dt}=\sin t[/tex]
[tex]a=\frac{\sin t}{1-\cos t}=\frac{\frac{\sqr3}2}{1-\frac12}=\sqr3[/tex]
[tex]y-y_1=a(x-x_1)[/tex]
[tex]y=a(x-(t-\sin t))+(1-\cos t)[/tex]
[tex]y=\sqr3(x-(\frac{\pi}3-\frac{\sqr3}{2}))+(1-\frac12)[/tex]
[tex]y=\sqr3x-\frac{\pi\sqr3}3+\frac32+\frac12[/tex]
[tex]y=\sqr3x-\frac{\pi\sqr3}3+2=\sqr3x+2-\frac{\pi}{\sqr3}[/tex]
The square root of Chuck Norris is pain. Do not try to square Chuck Norris, the result is death.
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer