Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.
Moderators: Aleks855 , Gustav , Nebuchadnezzar , Janhaa , DennisChristensen , Emilga
superpus
Cayley
Posts: 74 Joined: 30/10-2006 23:27
Location: Nordby
26/04-2007 00:03
Deriver funskjonen
f(x) = (x^2+x)lnx
Er dette en blanding av kjerneregelen og produktregelen eller bare kjerneregelen ?
superpus
Cayley
Posts: 74 Joined: 30/10-2006 23:27
Location: Nordby
26/04-2007 00:05
Jeg sliter også med denne : f(x) = (e^-1) delt på (1-e^x)
Mari89
Cantor
Posts: 121 Joined: 02/04-2007 22:09
26/04-2007 00:09
Tror det burde fungere å bruke produktregelen på den første funksjonen der.
zell
Guru
Posts: 1777 Joined: 09/02-2007 15:46
Location: Trondheim
26/04-2007 00:22
Skulle funke det..
[tex]f^,(x) = (2x + 1)\ln{x} + (x^2 + x) \ \cdot \ \frac 1x[/tex]
[tex]f^,(x) = \ln{x}(2x + 1) + x + 1[/tex]
superpus
Cayley
Posts: 74 Joined: 30/10-2006 23:27
Location: Nordby
26/04-2007 00:31
okå, la oss si at vi bruker produktregelen.
da får vi :
2x * ln x + (x^2+x) 1/x
Hva gjør man så ?
zell
Guru
Posts: 1777 Joined: 09/02-2007 15:46
Location: Trondheim
26/04-2007 00:46
Har jo løst det ovenfor!
Du får:
[tex](2x + 1)\ln{x} + (x^2 + x) \ \cdot \ \frac 1x = \ln{x}(2x + 1) + \frac{x^2 + x}{x} \\ = \ln{x}(2x + 1) + \frac{x^2}{x} + \frac{x}{x} = \underline{\underline{\ln{x}(2x + 1) + x + 1}}[/tex]
superpus
Cayley
Posts: 74 Joined: 30/10-2006 23:27
Location: Nordby
26/04-2007 01:47
hmmm
er fasit feil da da mon tro ? Det står :
2lnx + (x+1)
zell
Guru
Posts: 1777 Joined: 09/02-2007 15:46
Location: Trondheim
26/04-2007 11:36
[tex]f(x) = x^2\ln{x} + x\ln{x}[/tex]
[tex]u = x^2\ln{x} \ , \ u^, = (x^2)^,\ln{x} + x^2(\ln{x})^, = 2x\ln{x} + x[/tex]
[tex]v = x\ln{x} \ , \ v^, = (x)^,\ln{x} + x(\ln{x})^, = \ln{x} + 1[/tex]
[tex]f^,(x) = 2x\ln{x} + x + \ln{x} + 1 = \ln{x}(2x + 1) + x + 1[/tex]
Kan ikke se noe feil me den..
Toppris
Maskinmester
Posts: 383 Joined: 03/02-2005 19:32
Location: Stavanger
26/04-2007 11:39
zell wrote: [tex]f(x) = x^2\ln{x} + x\ln{x}[/tex]
[tex]u = x^2\ln{x} \ , \ u^, = (x^2)^,\ln{x} + x^2(\ln{x})^, = 2x\ln{x} + x[/tex]
[tex]v = x\ln{x} \ , \ v^, = (x)^,\ln{x} + x(\ln{x})^, = \ln{x} + 1[/tex]
[tex]f^,(x) = 2x\ln{x} + x + \ln{x} + 1 = \ln{x}(2x + 1) + x + 1[/tex]
Kan ikke se noe feil me den..
Neida, det er det svaret Mr. Maple også får. Så du er nok på trygg grunn.
zell
Guru
Posts: 1777 Joined: 09/02-2007 15:46
Location: Trondheim
26/04-2007 11:42
Flott
Sjekka det med Mathematica også..