sannsynlighet

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
vickl
Fibonacci
Fibonacci
Innlegg: 2
Registrert: 08/04-2021 09:49

Kan noen hjelpe meg med denne oppgaven? hvilket svaralternativ er riktig?

I en lite firma gjorde de en undersøkelse. 75% av de ansatte var fornøyde, mens de resterende var ikke fornøyde. De så videre at av de som var fornøyd hadde 80% erfaring fra lignende arbeid fra før av, og av de som ikke var fornøyd var det kun 65% av de som hadde erfaring fra lignende arbeid fra før. Hvis vi treffer en person som hadde erfaring fra lignende arbeid fra før av, hva er sannsynligheten for at denne personen ikke er fornøyd?

a) 0.7869
b)0.2131
c)0.1121
D)0.1625
Mattebruker
Cayley
Cayley
Innlegg: 83
Registrert: 26/02-2021 21:28

Starte med å innføre desse hendingane:

F: Tilsett er fornøgd
E: Tilsett har erfaring frå liknande arbeid.

Hint:

Først: Finn P( E ) ( totalt sannsyn )

Til slutt: Finn P( [tex]\overline{F}[/tex] gitt E) ( Baye's setning )
jos
Dirichlet
Dirichlet
Innlegg: 152
Registrert: 04/06-2019 12:01

E = erfaring fra liknende arbeid, F = Fornøyd. Vi skal finne $ P(\overline F|E):\,$ sannsynligheten for å ikke være fornøyd gitt erfaring fra liknende arbeid.

$P(E) = P(E|F)\cdot P(F) + P(E|\overline F)\cdot P(\overline F)$ (total sannsynlighet)$\, = 0.75\cdot 0.8 + 0.25\cdot 0.65 = 0.7625$

$P(\overline F|E) = \frac{P(E)\cap P(\overline F)}{P(E)} = \frac{P(E|\overline F]\cdot P(\overline F)}{P(E)} = \frac{0.25\cdot 0.65}{0.7625} = 0.2131$

Hvis du setter opp et firefeltsskjema, ser du det lettere med $F,\overline F,E$ og $\overline E$.
Svar