Oppgave om fallskjermhopper (diff. likninger):
Hvordan skal jeg løse den?
Vi regner at luftmotstanden for en fallskjermhopper er proporsjonal med farten. Når fallskjermen løser seg ut, er farten 47 m/s. Sett k = 140.
Fallskjermhopperen har massen m = 72 kg.
a) Hva nærmer farten seg etter hvert?
b) Finn farten v(t) t sekunder etter at fallskjermen er løst ut.
c) Finn når farten er 25 m/s.
d) Finn formelen s(t) for den tilbakelagte veistrekningen etter tiden t.
e) Fallskjermen løses ut i en høyde på 1700 meter. Hvor lang tid tar det før fallskjermhopperen treffer bakken?
R2 matte diff likninger
Moderatorer: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Hint: Ta utgangspunkt i kraftlova
( * ) ( [tex]\sum[/tex]F = m a = m v' )
( ** ) [tex]\sum[/tex]F = Tyngda( G ) - luftmotstanden( L ) = m g - k[tex]\cdot[/tex]v
Ved å kombinere ( * ) og ( ** ) får vi ei lineær 1. ordens difflikning med farta ( v( t ) ) som ukjend. Denne kan vi løyse " for hand " ( multiplisere med integrerande faktor ) eller meir direkte ved å bruke CAS-verktøyet i GeoGebra.
( * ) ( [tex]\sum[/tex]F = m a = m v' )
( ** ) [tex]\sum[/tex]F = Tyngda( G ) - luftmotstanden( L ) = m g - k[tex]\cdot[/tex]v
Ved å kombinere ( * ) og ( ** ) får vi ei lineær 1. ordens difflikning med farta ( v( t ) ) som ukjend. Denne kan vi løyse " for hand " ( multiplisere med integrerande faktor ) eller meir direkte ved å bruke CAS-verktøyet i GeoGebra.
Sist redigert av Mattebruker den 08/04-2021 10:20, redigert 1 gang totalt.
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Kontroll: Fallskjermhopparen fell med konstant fart når luftmotstanden L balanserer Tyngda G ( [tex]\sum F[/tex] = 0 )
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
v( t ) = 5.04 + 41.96[tex]\cdot[/tex]e[tex]^{-\frac{k\cdot t}{m}}[/tex] ( Full kontroll så langt ! )
Vedk. punkt c: Likning rett oppstilt. Eit godt råd : La sekretæren ( CAS ) gjere jobben !
Vedk. punkt c: Likning rett oppstilt. Eit godt råd : La sekretæren ( CAS ) gjere jobben !
Sist redigert av Mattebruker den 08/04-2021 10:35, redigert 1 gang totalt.
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Vedk. punkt c: Spørsmål av denne typen vil neppe dukke opp på Del 1 ved ein eventuell skriftleg eksamen. Det betyr at du har tilgang til digitale hjelpemiddel ( CAS )
når du skal løyse dette problemet. Hugs at da sparer du verdifull tid ! Du kan sjølvsagt også løyse problemet( likninga ) for hand , men det blir
som å " gå over bekken etter vatn ".
Vedk. punkt d : Veglengda s = [tex]\int[/tex]v( t ) dt ( heilt korrekt ! )
når du skal løyse dette problemet. Hugs at da sparer du verdifull tid ! Du kan sjølvsagt også løyse problemet( likninga ) for hand , men det blir
som å " gå over bekken etter vatn ".
Vedk. punkt d : Veglengda s = [tex]\int[/tex]v( t ) dt ( heilt korrekt ! )
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Vedk. punkt c:
1) Legg inn likninga( sjå tidlegare innlegg ) på 1. linje i CAS-feltet.
2) Trykk på [tex]\approx[/tex]-tasten på verktøylinja. Da vil løysinga( tilnærma verdi ) dukke opp på neste linje i CAS-feltet.
Vedk. punkt d: Ser greitt ut , men du må bestemme verdien på konstantleddet( C ) også . Hugs at s( 0 ) = 1700 ( jamfør oppgavetekst ) .
1) Legg inn likninga( sjå tidlegare innlegg ) på 1. linje i CAS-feltet.
2) Trykk på [tex]\approx[/tex]-tasten på verktøylinja. Da vil løysinga( tilnærma verdi ) dukke opp på neste linje i CAS-feltet.
Vedk. punkt d: Ser greitt ut , men du må bestemme verdien på konstantleddet( C ) også . Hugs at s( 0 ) = 1700 ( jamfør oppgavetekst ) .