Derivasjon

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Derivasjon

Innlegg Em123 » 08/06-2020 13:33

Hei,
Hvordan regner man seg frem til at en funksjon er deriverbar i hele defibisjonsmengde?
Em123 offline

Re: Derivasjon

Innlegg Hege Baggethun2020 » 14/06-2020 01:37

Hei.

Jeg antar at dette spørsmålet gjelder for alle [tex]x \in \mathbb{R}[/tex] dvs definisjonsmengden er alle [tex]x \in \mathbb{R}[/tex]

Hvis du skal vise at [tex]f[/tex] er deriverbar for alle [tex]x \in \mathbb{R}[/tex], så må du vise at [tex]f'(x)[/tex] eksisterer for alle [tex]x \in \mathbb{R}[/tex].

Ved definisjonen så er [tex]f[/tex] deriverbar for alle [tex]x \in \mathbb{R}[/tex] dersom [tex]\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}[/tex] eksisterer.

Velg en vilkårlig funksjon [tex]f(x) = ax[/tex], og [tex]a,x \in \mathbb{R}[/tex].

Definisjonen gir [tex]\lim_{h\rightarrow 0}\frac{a(x+h)-ax}{h} = \lim_{h\rightarrow 0} \frac{ax+ah-ax}{h}[/tex]

Dette gir [tex]\lim_{h\rightarrow 0}\frac{ah}{h} = \lim_{h\rightarrow 0}a = a[/tex] for alle [tex]x \in \mathbb{R}[/tex].

Vi har vist at [tex]f[/tex] er deriverbar for alle [tex]x \in \mathbb{R}[/tex] og den deriverte er [tex]f'(x) = a[/tex].

Det kan være morsomt å teste andre funksjoner også. Prøv for eksempel med [tex]f(x) = sin x[/tex] og bruk den trigonometriske identiteten [tex]sin(x+h) = sinx cosh + cosxsinh[/tex] i utregningen. Er denne funksjonen deriverbar for hele definisjonsmengden?

Håper dette kan være til hjelp?

Vennlig hilsen
Hege :D
[tex]\sum_{y<n\leq x}a(n)f(n) = A(x)f(x)-A(y)f(y)-\int_{y}^{x}A(t)f'(t)dt[/tex]
Hege Baggethun2020 offline
Noether
Noether
Innlegg: 38
Registrert: 13/06-2020 22:21

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 59 gjester