Dobbeltderiverttest vs. fortegnslinjeskjema

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Dobbeltderiverttest vs. fortegnslinjeskjema

Innlegg turbobjørn » 08/05-2020 21:06

Hei!

R1 H16 2) b).

NDLA bruker her dobbeltderiverttesten for å avgjøre om hva som er topp- og bunnpunkt, mens Dennis Christensen tegner fortegnslineskjema.
Spørsmålet mitt er: hvilken metode bør man bruke?

Dersom et av punktene var et terassepunkt (altså ikke et ekstremalpunkt(topp- eller bunnpunkt)), hva ville dobbeltderiverttesen gitt oss da? Og hvordan kan man med den metoden ta høyde for terassepunkt?

Edit:

Her er LF av DC: https://matematikk.net/side/R1_2016_h%C ... C3%98SNING
Her er LF av NDLA: https://ndla.no/nb/subjects/subject:32/ ... e:1:192886
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Re: Dobbeltderiverttest vs. fortegnslinjeskjema

Innlegg Aleks855 » 08/05-2020 21:18

Spørsmålet "hvilken metode BØR man bruke?" er ofte veldig vanskelig å svare på. Svaret er at det finnes mange metoder å avgjøre samme sak på, og her demonstreres to av dem. Det er egentlig opp til deg å bruke den metoden du liker best, og ha den andre i bakhodet i tilfelle du vil dobbeltsjekke.

Når det gjelder terassepunkt; hvorfor ikke betrakte en funksjon som du vet har et terrassepunkt, og se hva som skjer med den andrederiverte i og rundt det punktet?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6352
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Dobbeltderiverttest vs. fortegnslinjeskjema

Innlegg turbobjørn » 09/05-2020 12:19

Aleks855 skrev:Spørsmålet "hvilken metode BØR man bruke?" er ofte veldig vanskelig å svare på. Svaret er at det finnes mange metoder å avgjøre samme sak på, og her demonstreres to av dem. Det er egentlig opp til deg å bruke den metoden du liker best, og ha den andre i bakhodet i tilfelle du vil dobbeltsjekke.

Når det gjelder terassepunkt; hvorfor ikke betrakte en funksjon som du vet har et terrassepunkt, og se hva som skjer med den andrederiverte i og rundt det punktet?


Ser på [tex]f(x)=x^3[/tex]. Denne vil ha et terassepunkt i x=0 fordi den deriverte her er 0 og positiv både før og etter.

Tar man dobbeltderiverttesten får man [tex]f''(0)=0[/tex]. Det tyder på at dersom man bruker dobbeltderiverttesten og man får:
* <0 --> Toppunkt
* 0 --> Terassepunkt
* >0 --> Bunnpunkt

Vil dette alltid stemme, eller kan man få "falske løsninger"? (Altså man tror det er et terassepunkt pga. f''=0, men så er det ikke det).
Vedlegg
Screenshot 2020-05-09 at 13.13.09.png
Screenshot 2020-05-09 at 13.13.09.png (310.35 KiB) Vist 657 ganger
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Re: Dobbeltderiverttest vs. fortegnslinjeskjema

Innlegg Aleks855 » 09/05-2020 12:55

Det interessante med andrederiverttesten her er to ting. Ja, den er 0 i punktet, men den bytter fortegn.

Hvis vi ser på $x^3$ for $x<0$, så ser vi at den er på vei oppover, men den er i ferd med å flate ut og deretter gå nedover. Dette kjennetegnes av en negativ andrederivert. Den negative andrederiverte forteller oss at funksjonen har en "tendens" i dette området til å synke, selv om den kanskje er på vei oppover foreløpig.

Dette kan vi også se dersom vi betrakter funksjonen $g(x) = -x^2$, som også vil ha negativ andrederivert. Men $g(x)$ vil deretter faktisk gå nedover, i tråd med tendensen som den andrederiverte forteller oss.

$f(x) = x^3$ gjør ikke det. Den flater ut, og starter deretter en ny tendens. Dette beskrives også av den andrederiverte i dette punktet. Ikke bare fordi den ble $0$, men fordi den bytter fortegn.

Dette er det som er interessant med den andrederiverte. Den bryr seg ikke om funksjonen går oppover eller nedover akkurat nå, men ser heller på den generelle tendensen til funksjonen. $g(x) = -x^2$ går riktignok oppover for $x<0$, men den negative andrederiverte i det samme område forteller oss at det er en midlertidig greie, og forutser at dette vil endres.

For $x^3$ ser vi at den "går oppover, men flater ut" (negativ andrederivert), men deretter fortetter med en oppover-tendens for $x>0$ (positiv andrederivert).
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6352
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Dobbeltderiverttest vs. fortegnslinjeskjema

Innlegg turbobjørn » 09/05-2020 13:42

Aleks855 skrev:

Takk for grundig forklaring. :)
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Hvem er i forumet

Brukere som leser i dette forumet: Google [Bot] og 89 gjester