Løs likninga under:
[tex]\large \log_{x^2+2}(4-5x^2-6x^3)=2[/tex]
vgs logaritme-oppgave
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Flott å se at det endelig er noe jeg som VGS elev også kan delta på
[tex]log_{x^2+2} (4-5x^2-6x^3)=2[/tex]
Bruker regelen
[tex]m=log_n(n^m)[/tex]
og sier derfor at
[tex]log_{x^2+2} (4-5x^2-6x^3)=2 \Leftrightarrow log_{x^2+2} (4-5x^2-6x^3)=log_{x^2+2}(x^2+2)^2[/tex]
Hvis to logaritmer har samme basetall kan vi si at [tex]log_n(f(x))=log_n(g(x)) \Leftrightarrow f(x) = g(x)[/tex]
Derfor
[tex]4-5x^2-6x^3=x^4+4x^2+4 \Leftrightarrow -x^4-6x^3-9x^2=0[/tex]
Videre får vi
[tex]-x^2(x+3)^2=0[/tex]
[tex]-x^2=0 \Leftrightarrow x=0[/tex]
[tex](x+3)^2=0\Leftrightarrow x=-3[/tex]
Derfor kan vi si at
[tex]x_1 = 0, x_2= (-3)[/tex]
Kan det stemme?

[tex]log_{x^2+2} (4-5x^2-6x^3)=2[/tex]
Bruker regelen
[tex]m=log_n(n^m)[/tex]
og sier derfor at
[tex]log_{x^2+2} (4-5x^2-6x^3)=2 \Leftrightarrow log_{x^2+2} (4-5x^2-6x^3)=log_{x^2+2}(x^2+2)^2[/tex]
Hvis to logaritmer har samme basetall kan vi si at [tex]log_n(f(x))=log_n(g(x)) \Leftrightarrow f(x) = g(x)[/tex]
Derfor
[tex]4-5x^2-6x^3=x^4+4x^2+4 \Leftrightarrow -x^4-6x^3-9x^2=0[/tex]
Videre får vi
[tex]-x^2(x+3)^2=0[/tex]
[tex]-x^2=0 \Leftrightarrow x=0[/tex]
[tex](x+3)^2=0\Leftrightarrow x=-3[/tex]
Derfor kan vi si at
[tex]x_1 = 0, x_2= (-3)[/tex]
Kan det stemme?
Bra, helt korrekt!Kay skrev:Flott å se at det endelig er noe jeg som VGS elev også kan delta på![]()
[tex]log_{x^2+2} (4-5x^2-6x^3)=2[/tex]
Bruker regelen
[tex]m=log_n(n^m)[/tex]
og sier derfor at
[tex]log_{x^2+2} (4-5x^2-6x^3)=2 \Leftrightarrow log_{x^2+2} (4-5x^2-6x^3)=log_{x^2+2}(x^2+2)^2[/tex]
Hvis to logaritmer har samme basetall kan vi si at [tex]log_n(f(x))=log_n(g(x)) \Leftrightarrow f(x) = g(x)[/tex]
Derfor
[tex]4-5x^2-6x^3=x^4+4x^2+4 \Leftrightarrow -x^4-6x^3-9x^2=0[/tex]
Videre får vi
[tex]-x^2(x+3)^2=0[/tex]
[tex]-x^2=0 \Leftrightarrow x=0[/tex]
[tex](x+3)^2=0\Leftrightarrow x=-3[/tex]
Derfor kan vi si at
[tex]x_1 = 0, x_2= (-3)[/tex]
Kan det stemme?
Der er 2 løsninger.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]