Hei,
Jeg har en oppgave jeg sliter med i Pytagoras.
-----------------------------------------
I trekanten ABC er AC = 3 * BC. 
AB = 8,5 cm.
Regn ut AC og BC.
------------------------------------------
AC er Hypotenusen, så da tenkte jeg først at det ville bli slik:
3x^2 = x^2 + 8,5^2
Men når jeg regner det ut på den måten blir ikke svaret riktig. I fasit står det at AC=9 og BC=3. 
Derfor må 9 være det man står igjen med før man finner kvadratroten.
8,5*8,5 = 72,25 og for at 72,35 skal bli nært 9 må det deles på 8...
kan være jeg er helt på bærtur her.
Jeg får det bare ikke til å gå opp. 
Er det noen som kan gi meg riktig fremgangsmåte på slike oppgaver?
            
			
									
									
						Pytagoras med to ukjente?
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Du vet at 
[tex]AB=8,5cm[/tex].
Sett [tex]BC=x[/tex]. Da blir [tex]AC=3x[/tex]
Da vet du at
[tex](3x)^2=x^2+(8,5cm)^2[/tex]
Får du det da til?
            
			
									
									[tex]AB=8,5cm[/tex].
Sett [tex]BC=x[/tex]. Da blir [tex]AC=3x[/tex]
Da vet du at
[tex](3x)^2=x^2+(8,5cm)^2[/tex]
Får du det da til?
"They were threatened by my intelligence and too stupid to know thats why they hated me" - Dr.Sheldon Cooper
						- 
				Nebuchadnezzar
 - Fibonacci

 - Posts: 5648
 - Joined: 24/05-2009 14:16
 - Location: NTNU
 
Du tenker helt riktig men husk at du har 
[tex]AC^2 = (3x)^2 = 9 x^2[/tex] og ikke [tex]AC^2 \neq 3 x^2[/tex].
=)
            
			
									
									[tex]AC^2 = (3x)^2 = 9 x^2[/tex] og ikke [tex]AC^2 \neq 3 x^2[/tex].
=)
"Å vite hva man ikke vet er og en slags allvitenhet" -  Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
						https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
- 
				ThomasSkas
 - Galois

 - Posts: 598
 - Joined: 09/10-2012 18:26
 
Bare et lite tips, sånn generelt til oppgaver med ukjente, x osv.
Sett alltid et element i en oppgave som x.
også lag tanker eller bilder i hodet hvordan du tenker resten vil være ut ifra teksten.
            
			
									
									
						Sett alltid et element i en oppgave som x.
også lag tanker eller bilder i hodet hvordan du tenker resten vil være ut ifra teksten.

