
Mitt løsningsforslag:
[tex]$$L\left[ {y^\prime - y} \right] = L\left[ {{e^{2x}}} \right]$$[/tex]
[tex]$$\left[ {{s^2}Y\left( s \right) - sY\left( 0 \right) - Y^\prime \left( 0 \right)} \right] - Y\left( s \right) = {1 \over {s - 2}}$$[/tex]
Har her benyttet med av reglene; ix, viii og iii (se formelsamling nederst).
[tex]$$\left( {{s^2} - 1} \right)Y\left( s \right) = {1 \over {s - 2}} + sY\left( 0 \right) + Y^\prime \left( 0 \right)$$[/tex]

Dette gir meg hvertfall:
[tex]$$\left( {{s^2} - 1} \right)Y\left( s \right) = {1 \over {s - 2}} + 2s$$[/tex]
[tex]$$\left( {{s^2} - 1} \right)Y\left( s \right) = {{1 + 2s\left( {s - 2} \right)} \over {s - 2}}$$[/tex]
[tex]$$Y\left( s \right) = {{\left[ {1 + 2s\left( {s - 2} \right)} \right]\left( {{s^2} - 1} \right)} \over {s - 2}}$$[/tex]
[tex]$$Y\left( s \right) = {{\left[ {2{s^2} - 4s + 1} \right]\left( {{s^2} - 1} \right)} \over {s - 2}}$$[/tex]
[tex]$$s = {{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \cdot 2 \cdot 1} } \over {2 \cdot 2}} = {{4 \pm \sqrt 8 } \over 4} = \left\{ {\matrix{{{{\sqrt 2 } \over 4}} \cr {{{2 - \sqrt 2 } \over 2}} \cr } } \right.$$[/tex]
Ble bare texas det her... Hvor skar det seg?

Formelsamlingen:
