Integrasjon - R2

Fra Matematikk.net
(diff) ← Eldre revisjon | Nåværende revisjon (diff) | Nyere revisjon → (diff)
Hopp til:navigasjon, søk

Nedenfor følger en del sentrale ubestemte integraler som er aktuelle for VG 3 - R2. Legg gjerne til integraler du tenker bør være med. Det er ofte forskjellige metoder for løsning og det nyttig å se forskjellige løsningsvarianter av samme oppgave.

$\\$

$ 1) \quad $$\int{\tan( x)}dx $

$\\$


Vi vet at $\tan\,x=\frac{\sin\,x}{\cos\,x}$ og at $\frac{d}{dx}\cos\,x=-\sin\,x$.

Vi setter $u=\cos\,x$:

<math>u=\cos\,x\,\Rightarrow\,\rm{d}u=-\sin\,x\rm{d}x</math>
Vi setter inn i integralet og får
<math>I = \int \sin\,x \cdot \frac{1}{\cos\,x} dx=\int -\frac{1}{u}\rm{d}u=-\ln|u|+C</math>
Vi kan nå erstatte u med x igjen:
<math>I=-\ln|\cos\,x|+C</math>

$\\$

$ 2) \quad$$\int{tan^2 (x)} dx $

$\\$

Bruker resultatet fra derivasjonen av tan(x):

$( tan(x) )' = tan^2(x) + 1 \Rightarrow \\ tan^2(x)= (tan(x))' - 1$

Vi integrerer så på begge sider

$ \int tan^2(x)dx = \int (tan(x))' -\int 1dx \\ \int tan^2(x)dx=tan(x)- x+ C$


$\\$

$\\$

$ 3) \quad$$\int{ln (x)} dx $

$\\$

Vi vil integrere funksjonen $f(x)=\ln\,x$. Til det kan vi bruke et lite triks og delvis integrasjon.
Vi skriver <math>\ln\,x=1\cdot\ln\,x</math> og lar <math>u=\ln\,x</math> og <math>v'=1</math>. Da får vi
$u'= \frac{1}{x}$ og v = x. Integralet blir
<math>\int 1\cdot\ln\,x\rm{d}x=x\ln\,x-\int x\cdot\frac1x\rm{d}x=x\ln\,x-\int\rm{d}x=x\ln\,x-x+C</math>
Resultatet er altså at

$\int\ln |x|=x\ln\,x-x+C$

$\\$

$ 4) \quad$$\int{cos^2 (x)} dx $

$\\$

Vi prøver delvis integrasjon. ( cos x)' = - sin x og (sin x)' = cos x).

$I = \int \cos^2\,x dx = \int (\cos\,x)(\cos\,x)dx = \sin\,x \cos\,x - \int(- \sin\,x) \sin\,x dx \\ \int \cos^2\,x dx =\sin\,x \cos\,x + \int \sin^2\,x dx \\ \int \cos^2\,x dx =\sin\,x \cos\,x + \int 1 - \cos^2\,x dx \\ \int \cos^2\,x dx =\sin\,x \cos\,x + \int 1dx - \int \cos^2\,x dx \\ \int \cos^2\,x dx =\sin\,x \cos\,x + x - \int \cos^2\,x dx \\ 2 \int \cos^2\,x dx =\sin\,x \cos\,x + x \\ \int \cos^2\,x dx = \frac 12(\sin\,x \cos\,x + x) + C $

$\\$

$\\$

$ 5) \quad$$\int{sin^2 (x)} dx $

$\\$

<math> \int sin^2x dx = \int (sinx \cdot sinx) dx \\ = sinx \cdot (-cosx) - \int cosx \cdot (-cosx)dx \\

= - sinx cosx + \int (1-sin^2x) dx \\ = - sinx cosx + x - \int sin^2x dx</math>

Da har man:

<math> \int sin^2x dx = - sinx cosx + x - \int sin^2x dx \\ 2\int sin^2x dx = - sinx cosx + x \\ \int sin^2x dx = - \frac12 (sinx cosx - x) + C </math>

$\\$

$ 6) \quad$$\int{ x^2e^x} dx $

$\\$

Bruker delvis integrasjon. Setter $u =x^2$ og $v' = e^x$:

$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$

Repeterer så øvelsen med u = 2x og får:

$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx = x^2e^x - (2xe^x - 2 \int e^x dx) \\ x^2e^x-2xe^x+2e^x + c \\ = e^x(x^2-2x+2) + c$

$\\$

$ 7) \quad $$\int{\frac{1}{x+a}}dx $

$\\$

<math>\int{\frac{1}{x+a}}dx = ln |x+a| + C</math>

$\\$

$ 8) \quad \int (\frac{1}{4}x^3- \frac {1}{5}x^2+2x-4)dx $

$\\$

$ \int (\frac{1}{4}x^3- \frac {1}{5}x^2+2x-4)dx= \frac{1}{16}x^4 - \frac{1}{15}x^3 + x^2 - 4x+C $

$\\$ $\\$

$ 9) \quad \int 4e^{2x+1}dx $

$\\$

Prøver integrasjon med variabelskifte, og setter

$u = 2x + 1 \\ du = 2dx\\ 4dx = 2du $

$\int 4e^{u}dx = \int 2e^{u}du = 2e^{u} + C = 2e^{2x+1} + C$

$\\$

$10) \quad \int \frac{1}{1+ \sqrt{x}}dx $

$\\$

Setter $ u = 1 + \sqrt{x } \Rightarrow \sqrt x = u-1\\ \frac{du}{dx}= \frac12x^{- \frac12} \\ du= \frac{1}{2 \sqrt{x}}dx \\ dx= 2 \sqrt{x}du \\ \int \frac{1}{u}dx = \int \frac{1}{u}2 \sqrt{x}du $


$\int \frac{1}{u}2 \sqrt{x}du \\= \int \frac{1}{u}2 (u-1)du \\= \int (2- \frac 2u)du \\= 2 \int du - 2\int \frac1u du\\ = 2u -2ln|u| + k$

Substituerer tilbake til x og får:

$ 2(1+ \sqrt x) -2ln(1 + \sqrt x) + k \\ = 2 + 2\sqrt x - 2ln(1 + \sqrt x) + k \\ = 2\sqrt x - 2ln(1 + \sqrt x)+ c $


$\\$

$11) \quad \int \sin\,(2x)\,dx $

$\\$

Setter u = 2x. $ \frac{du}{dx} = 2$

Vi får da:

$\int sin(2x) \,dx = \int sin (u) \,dx = \frac 12 \int sin(u) \,du = - \frac{1}{2}cos (2x) + c $

$\\$

$12) \quad \int (e^x-e^{-x})dx $

$\\$

$\int (e^x - e^{-x}) \, dx = e^x + e^{-x} + c$

$\\$

$13) \quad \int \frac{x}{x^2 - 4\,}dx $

$\\$

Prøver å sette $u= x^2-4$ da blir $\frac{du}{dx} = 2x$

$\int \frac{x}{x^2 - 4}\,dx = \int x \frac{1}{u} dx = \int \frac12 \frac 1u du = \frac 12 ln |x^2 - 4| +c$


$\\$

$14) \quad \int \frac{3x}{\sqrt{x^2 - 1}\,}dx $

$\\$

$u = x^2-1 \, , \, dx= \frac{du}{2x }\\ \int 3xu^{- \frac 12} \frac{du}{2x} \\ = \int \frac 32 u^{- \frac 12}du \\ = \frac 32 \cdot 2 u^{\frac 12} + c \\ =3 \sqrt{x^2-1} + c$

$15) \quad \int x^3 \cdot e^{x^2}dx $

$\\ $

$u = x^2 \, , \, dx=\frac{du}{2x} \\ \int x\cdot u \cdot e^{u} \frac{du}{2x} = \int \frac 12 ue^{u}du$

Kan nå bruke delvis integrasjon.

$\int \frac 12 ue^{u}du = \frac 12 (ue^{u} - \int e^{u}) = \frac 12( x^2 e^{x^2} - e^{x^2}) + c = \frac 12 e^{x^2}(x^2-1) + c$

$\\$

$16) \quad \int \frac{1}{x^2-3x+2}dx $

$\\$

$\int \frac{1}{x^2-3x+2}dx =\int \frac{1}{(x-1)(x-2)}dx = \int \frac{A}{x-1} + \frac{B}{x-2}dx \\ 1= A(x-2)+B(x-1)\\ x=1: \, A=-1 \\ x=2: \, B= 1 \\ \int \frac{-1}{x-1} + \frac{1}{x-2}dx \\ = -ln|x-1| + ln| x -2 | +c \\ = ln| \frac{x-2}{x-1}| + c $

$\\$

$17) \quad \int \frac{1}{x^3-3x^2+2x}dx $

$\\$

$\int \frac{1}{x^3-3x^2+2x}dx =\int \frac{1}{x(x-2)(x-1)}dx = \int ( \frac{A}{x} + \frac {B}{x-2} +\frac {C}{x-1}) dx \\ 1= A(x-2)(x-1) + Bx(x-1) + Cx(x-2) \\ x=0:\, A=\frac 12 \\ x=2:\, B = \frac 12 \\ x=1 \, C= - 1 \\ \int ( \frac{\frac 12}{x} + \frac {\frac 12}{x-2} +\frac {(-1)}{x-1}) dx \\ = \frac 12( ln|x| + ln|x-2|) - ln|x-1| +C $

$\\$

$18) \quad \int \frac{x^3+x^2+x}{x^2-1}dx $

$\\$

Her bruker vi polynomdivisjon først, og får:

$\int \frac{x^3+x^2+x}{x^2-1}dx = \int (x+1+ \frac{2x+1}{x^2-1} )dx \\ =\int (x+1+ \frac{A}{x+1} + \frac{B}{x-1}) dx \\ 2x+1=A(x-1)+B(x+1) \\ x= -1:\, -1 = -2A \Rightarrow A= \frac{1}{2} \\ x=1: \, 3=2B \Rightarrow B = \frac{3}{2} \\=\int (x+1+ \frac{\frac{1}{2}}{x+1} + \frac{\frac{3}{2}}{x-1}) dx \\ = \frac 12 x^2+x+ \frac 12 ln[x+1| + \frac 32 ln|x-1| + c \\ = \frac 12( x^2 + 2x + ln|x+1| + 3 ln|x-1| ) + c$


$\\$

$19) \quad \int \frac{1}{x^2+4x+4}dx $

$\\$

Her kan det være naturlig å teste delbrøkoppspalting, men vi får problemer med å finne A og B. Nevneren kan skrives som $(x+2)^2$ Vi prøver i stedet variabelskifte med $u= x +2$ :

$\int \frac {1}{u^2}du = \int u^{-2}du = - u^{-1} + c = - \frac{1}{x+2} +c$

$\\$

$20) \quad \int dx $