Plan i rommet
Fra Matematikk.net
Et plan i rommet er beskrevet ved ligningen
- <tex>ax+by+cz=d</tex>
Dvs. at hver kvadruppel (a,b,c,d) svarer til et bestemt plan, og alle punkter (x,y,y) som tilfredsstiller ligningen vil være et punkt i dette planet.
Utledning av ligningen for planet
Lar vi vektoren <tex>\vec{n}=\frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c)</tex> være enhetsnormalvektoren til planet og vektoren <tex>\vec{r}=(x,y,z)</tex> være et punkt i planet, ser vi at skalarproduktet
- <tex>\vec{n}\cdot\vec{r}=l</tex>
der <tex>l</tex> er avstanden fra origo til planet. Skriver vi ut denne ligninga og kaller <tex>\sqrt{a^2+b^2+c^2}l\equiv d</tex> får vi
- <tex>ax+by+cz=\sqrt{a^2+b^2+c^2}l=d</tex>.