1T 2016 vår LØSNING

Fra Matematikk.net
Hopp til: navigasjon, søk

Diskusjon av denne oppgaven

Mer diskusjon av denne oppgaven

Løsning av denne oppgaven laget av mattepratbruker LektorH


DEL EN

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

a)

b)

Oppgave 6

Oppgave 7

Oppgave 8

Oppgave 9

a)

b)

c)

Oppgave 10

Vi observerer at graf A er den eneste som har et minimum for en negativ x verdi. 2x + 6 = 0 gir løsning for x = - 3, altså er

h(x) funksjonen til graf A.

Graf B har ingen nullpunkter : $b^2 - 4ac < 0$

Vi observerer at $x^2 -2x + 9=0$ ikke har noen løsning, altså er

f(x) funksjonen til graf B.

g(x) er da funksjonen til C.

Oppgave 11

a)

b)

Oppgave 12

a)

b)

Oppgave 13

Vi leser av figuren:

$cos 53^{\circ} \approx 0,6 \\ sin 53^{\circ} \approx 0,8$

Tangens:

$tan 53^{\circ} \approx \frac 86 \approx 1,33 $

Oppgave 14

a)

Funksjonen har ekstremalpunkter når den deriverte er null. For x = 0 og x = 4 er det tillfelle. x = 0 er et toppunkt fordi den deriverte skifter fra positiv til negativ verdi, og x = 4 er et bunnpunkt fordi den deriverte skifter fra negativ til positiv verdi.

b)

Likningen for en rett linje er y = ax + b

I punktet (2,-3) er den deriverte lik -2. Det gir y= -2x + b

Setter så punktet (2, -3) inn for x og y for å finne b: $ -3 = -2 \cdot 2 +b$ som gir b=1.

Likningen blir da:

y = -2x + 1