R2 2012 vår LØSNING: Forskjell mellom sideversjoner
Linje 19: | Linje 19: | ||
=== c) === | === c) === | ||
=== d) === | === d) === | ||
<tex> y' -2y = 3 \\ y' \cdot e^{-2x}-2ye^{-2x} = 3e^{-2x} \\ (ye^{-2x})' =3e^{-2x} \\ ye^{-2x} = - \frac 32 e^{-2x} + C \\ y = - \frac 32 +Ce^{2x} </tex> | <tex> y' -2y = 3 \\ y' \cdot e^{-2x}-2ye^{-2x} = 3e^{-2x} \\ (ye^{-2x})' =3e^{-2x} \\ ye^{-2x} = - \frac 32 e^{-2x} + C \\ y = - \frac 32 +Ce^{2x} \\y(o) = 8 \Rightarrow 8 = - \frac 32 + C \Rightarrow C = \frac{19}{2} \\ y = - \frac 32 + \frac{19}{2}e^{2x}</tex> | ||
=== e) === | === e) === |
Sideversjonen fra 18. jun. 2012 kl. 07:31
Oppgave 1
a)
1)
<tex> f(x) = 3sin(2x)\\ u=2x, \quad u' = 2 \\ f'(x) = 2 \cdot 3 cos(2x) \\ f'(x) = 6cos(2x)</tex>
2)
<tex>g(x) = x^2sinx \\ u= x^2, \quad v = sinx \\ g'(x) = 2xsinx + x^2cosx =x(2sinx+xcosx)</tex>
3)
<tex>k(x) = 5cos(\frac{\pi}{12}x-2)+7 \\ k'(x) = - \frac{5 \pi}{12} sin( \frac{\pi}{13}x-2)</tex>
b)
c)
d)
<tex> y' -2y = 3 \\ y' \cdot e^{-2x}-2ye^{-2x} = 3e^{-2x} \\ (ye^{-2x})' =3e^{-2x} \\ ye^{-2x} = - \frac 32 e^{-2x} + C \\ y = - \frac 32 +Ce^{2x} \\y(o) = 8 \Rightarrow 8 = - \frac 32 + C \Rightarrow C = \frac{19}{2} \\ y = - \frac 32 + \frac{19}{2}e^{2x}</tex>
e)
<tex>1+e^{-x} + e^{-2x}+ .... \quad x > 0</tex>
1)
<tex>k= \frac{e^{-x}}{1} = \frac{e^{-2x}}{e^{-x}} = e^{-x}</tex>
<tex> -1 < e^{-x}<1 </tex>
Dvs: rekken konvergerer.
2)
<tex>S = \frac{a_1}{1-k} = \frac{1}{1-e^{-x}} = \frac {e^x}{e^x -1}</tex>