Rekker: Forskjell mellom sideversjoner
Linje 77: | Linje 77: | ||
==Eifel-tårn??== | ==Eifel-tårn??== | ||
== Aritmetisk progresjon == | |||
En aritmetisk følge er en tallfølge, $\{a_i\}_{i\in\mathbb{N}}$ ($\mathbb{N}=\{1,2,3,...\}$), slik at differansen mellom to påfølgende ledd er konstant; <math>a_{i+1}-a_i=d</math>. | |||
<blockquote style="padding: 1em; border: 3px dotted red;"> | |||
'''Eksempel''' | |||
:Vi kan definere en spesiell aritmetisk følge ved at <math>a_{i+1}-a_i=2</math>. For at denne følgen skal være unikt bestemt må vi definere en startverdi, f.eks. <math>a_1=3</math>. Følgen <math>\{a_i\}_{i\in\mathbb{N}}</math> er nå entydig bestemt siden formlene over gir at <math>a_2-a_1=a_2-3=2</math>. Dette gir at <math>a_2=2+3=5</math>. Videre er <math>a_3-a_2=a_3-5=2</math>, så <math>a_3=2+5=7</math> osv. | |||
</blockquote> | |||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=9F6%2B9F7%2B9F8%2B9F9%2B9FA%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | |||
== Aritmetisk rekke (sum) == | |||
En aritmetisk rekke er summen av leddene <math>a_i</math> i en aritmetisk progresjon <math>\{a_i\}_{i\in\mathbb{N}}</math> med et endelig antall ledd <math>N</math>. Den <math>n</math>-te partialsummen(delsummen) er summen av de <math>n\leq N</math> første leddene i rekken og kan defineres ved at <math>S_n=\sum_{i=1}^{n}a_i</math>. Siden <math>a_{i+1}=d+a_i</math> for aritmetiske følger, kan vi utlede en lukket form for den aritmetiske rekken av <math>n</math> ledd: | |||
<math>S_n=\sum_{i=1}^n a_i=a_1+(a_1+d)+(a_1+2d)+...+(a_1+(n-1)d)=na_1+\sum_{i=1}^n (i-1)d=na_1+d\sum_{i=0}^{n-1} i=na_1+\frac{n(n-1)}{2}d</math> | |||
Merk at formelen kun avhenger av startverdien <math>a_1</math> og den konstante differansen <math>d</math>. | |||
Alternativt kan vi uttrykke den samme aritmetiske rekken ved <math>S_n=\sum_{i=1}^na_i=\frac{a_1+a_n}{2}n</math>. Ideen her er å finne gjennomsnittsverdien av par av ledd: Første og siste ledd har et gjennomsnitt <math>\frac{a_1+a_n}{2}</math>. Andre og nest siste ledd har samme gjennomsnitt osv. Siden summen består av n ledd der hvert ledd har et gjennomsnitt på <math>\frac{a_1+a_n}{2}</math>, blir summen <math>\frac{a_1+a_n}{2}\cdot n</math>. | |||
<blockquote style="padding: 1em; border: 3px dotted red;"> | |||
'''Eksempel''' | |||
:La oss se på den endelige følgen <math>(a_i=i)_{i\in [1,10]}=\{1,2,\ldots ,10\}</math> Da blir summen <math>S=\sum_{i=1}^{10}i=\frac{1+10}{2}\cdot 10 = 55</math> | |||
</blockquote> | |||
==Geometrisk rekke=== | ==Geometrisk rekke=== |
Sideversjonen fra 12. jul. 2024 kl. 08:34
De naturlige tallene
1, 2, 3, 4 ,5, ......
Rekken blir:
1 + 2 + 3 + 4 + 5 + ............ + n
Leddets verdi er avhengig av posisjon i rekken. Dersom vi ser på ledd nummer fire, så er verdien 4, ledd fem har verdien 5 osv.
Den eksplisitte formelen blir da:
$a_n=n$
På den måten kan vi finne verdien til ledd nr. n.
Dersom vi kjenner verdien og plassen til ett ledd kan vi finne det neste. vi vet at ledd nr. n har verdien n. Siden dette er de naturlige tallene er forskjellen mellom to naboledd lik en.
Den rekkusive formelen blir da:
$a_{n+1} = a_n +1$
Kvadrater
Kvadrattallene er:
1, 4, 9 , 16, 25, ..............
Rekken blir :
1+ 4+9+16+25+ .......
Å finne formelen for leddene her er ikke så lett som for de naturlige tallene, fordi verdien til leddene endrer seg med kvadratet av posisjonen.
Rekken kan skrives slik:
$1^2 + 2^2 +3^2 + 4^2+ ..............+ n^2$
Eksplisit formel blir:
$a_n = n^2$
Rekkusivformel:
$a_{n+1} = ( \sqrt{a_n} +1)^2 = a_n + 2 \sqrt{a_n} +1 = a_n + 2n+1$
Trekanter
Rekken
1 + 3 + 6 + 10 + 15 + 21 +......
Representerer trekanttallene.
Eksplisit formel: $a_n = \frac {n(n+1)}{2}$ og rekursiv formel : $a_{n+1} = a_n + n +1$.
Rektangeler
Vi kan ha mange forskjellige. Her er en:
2 + 6 + 12 + 20 + .....
Det første rektangelet har lengde to og bredde en. Det andre lengde tre og bredde to, osv.
Eksplisit formel:
$a_n = (n+1)n = n^2+n$
Rekkusiv formel:
$a_{n+1} = a_n +2n$
Eifel-tårn??
Aritmetisk progresjon
En aritmetisk følge er en tallfølge, $\{a_i\}_{i\in\mathbb{N}}$ ($\mathbb{N}=\{1,2,3,...\}$), slik at differansen mellom to påfølgende ledd er konstant; <math>a_{i+1}-a_i=d</math>.
Eksempel
- Vi kan definere en spesiell aritmetisk følge ved at <math>a_{i+1}-a_i=2</math>. For at denne følgen skal være unikt bestemt må vi definere en startverdi, f.eks. <math>a_1=3</math>. Følgen <math>\{a_i\}_{i\in\mathbb{N}}</math> er nå entydig bestemt siden formlene over gir at <math>a_2-a_1=a_2-3=2</math>. Dette gir at <math>a_2=2+3=5</math>. Videre er <math>a_3-a_2=a_3-5=2</math>, så <math>a_3=2+5=7</math> osv.
Aritmetisk rekke (sum)
En aritmetisk rekke er summen av leddene <math>a_i</math> i en aritmetisk progresjon <math>\{a_i\}_{i\in\mathbb{N}}</math> med et endelig antall ledd <math>N</math>. Den <math>n</math>-te partialsummen(delsummen) er summen av de <math>n\leq N</math> første leddene i rekken og kan defineres ved at <math>S_n=\sum_{i=1}^{n}a_i</math>. Siden <math>a_{i+1}=d+a_i</math> for aritmetiske følger, kan vi utlede en lukket form for den aritmetiske rekken av <math>n</math> ledd:
<math>S_n=\sum_{i=1}^n a_i=a_1+(a_1+d)+(a_1+2d)+...+(a_1+(n-1)d)=na_1+\sum_{i=1}^n (i-1)d=na_1+d\sum_{i=0}^{n-1} i=na_1+\frac{n(n-1)}{2}d</math>
Merk at formelen kun avhenger av startverdien <math>a_1</math> og den konstante differansen <math>d</math>.
Alternativt kan vi uttrykke den samme aritmetiske rekken ved <math>S_n=\sum_{i=1}^na_i=\frac{a_1+a_n}{2}n</math>. Ideen her er å finne gjennomsnittsverdien av par av ledd: Første og siste ledd har et gjennomsnitt <math>\frac{a_1+a_n}{2}</math>. Andre og nest siste ledd har samme gjennomsnitt osv. Siden summen består av n ledd der hvert ledd har et gjennomsnitt på <math>\frac{a_1+a_n}{2}</math>, blir summen <math>\frac{a_1+a_n}{2}\cdot n</math>.
Eksempel
- La oss se på den endelige følgen <math>(a_i=i)_{i\in [1,10]}=\{1,2,\ldots ,10\}</math> Da blir summen <math>S=\sum_{i=1}^{10}i=\frac{1+10}{2}\cdot 10 = 55</math>
Geometrisk rekke=
En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>.
Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math>
Geometrisk rekke
En geometrisk rekke er summen av elementene i en geometrisk progresjon.
For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math>
Bevis for summeformel
Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom
<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math>
kan vi dele med faktoren <math>(k-1)</math> på begge sider og få
<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math>
Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig.
Uendelige geometriske rekker
Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.
I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$