Rekker: Forskjell mellom sideversjoner
Linje 76: | Linje 76: | ||
==Eifel-tårn??== | ==Eifel-tårn??== | ||
==Geometrisk rekke=== | |||
En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>. | |||
Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math> | |||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=9FB%2B9FC%2B9FD%2B9FE%2B9FF%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | |||
==Geometrisk rekke== | |||
En geometrisk rekke er summen av elementene i en geometrisk progresjon. | |||
For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math> | |||
===Bevis for summeformel=== | |||
Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom | |||
<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math> | |||
kan vi dele med faktoren <math>(k-1)</math> på begge sider og få | |||
<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math> | |||
Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig. | |||
==Uendelige geometriske rekker== | |||
Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi. | |||
I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$ |
Sideversjonen fra 12. jul. 2024 kl. 08:32
De naturlige tallene
1, 2, 3, 4 ,5, ......
Rekken blir:
1 + 2 + 3 + 4 + 5 + ............ + n
Leddets verdi er avhengig av posisjon i rekken. Dersom vi ser på ledd nummer fire, så er verdien 4, ledd fem har verdien 5 osv.
Den eksplisitte formelen blir da:
$a_n=n$
På den måten kan vi finne verdien til ledd nr. n.
Dersom vi kjenner verdien og plassen til ett ledd kan vi finne det neste. vi vet at ledd nr. n har verdien n. Siden dette er de naturlige tallene er forskjellen mellom to naboledd lik en.
Den rekkusive formelen blir da:
$a_{n+1} = a_n +1$
Kvadrater
Kvadrattallene er:
1, 4, 9 , 16, 25, ..............
Rekken blir :
1+ 4+9+16+25+ .......
Å finne formelen for leddene her er ikke så lett som for de naturlige tallene, fordi verdien til leddene endrer seg med kvadratet av posisjonen.
Rekken kan skrives slik:
$1^2 + 2^2 +3^2 + 4^2+ ..............+ n^2$
Eksplisit formel blir:
$a_n = n^2$
Rekkusivformel:
$a_{n+1} = ( \sqrt{a_n} +1)^2 = a_n + 2 \sqrt{a_n} +1 = a_n + 2n+1$
Trekanter
Rekken
1 + 3 + 6 + 10 + 15 + 21 +......
Representerer trekanttallene.
Eksplisit formel: $a_n = \frac {n(n+1)}{2}$ og rekursiv formel : $a_{n+1} = a_n + n +1$.
Rektangeler
Vi kan ha mange forskjellige. Her er en:
2 + 6 + 12 + 20 + .....
Det første rektangelet har lengde to og bredde en. Det andre lengde tre og bredde to, osv.
Eksplisit formel:
$a_n = (n+1)n = n^2+n$
Rekkusiv formel:
$a_{n+1} = a_n +2n$
Eifel-tårn??
Geometrisk rekke=
En geometrisk progresjon <math>(a_n)_{n\in\mathbb{N}}</math> er en tallfølge der hvert tall er et konstant multippel av det forrige, dvs <math>\frac{a_{n+1}}{a_n}=k</math>.
Slike tallfølger kan skrives på formen <math>a_n=a_1k^{n-1}</math>
Geometrisk rekke
En geometrisk rekke er summen av elementene i en geometrisk progresjon.
For geometriske rekker <math>a_n=a_1k^{n-1}</math> er <math>S_n=\sum_{i=1}^n a_i=a_1\frac{k^n-1}{k-1}</math>
Bevis for summeformel
Betrakt tallet <math>(k-1)(1+k+k^2+k^3+ \ldots +k^n)</math>. Ganger vi ut parentesene, får vi <math>(k+k^2+k^3+ \ldots + k^{n+1})-(1+k+k^2+k^3+ \ldots + k^n) = k^{n+1}-1</math>. Men dersom
<math>(k-1)(1+k+k^2+ \ldots + k^n) = k^{n+1}-1</math>
kan vi dele med faktoren <math>(k-1)</math> på begge sider og få
<math>\sum_{i=0}^{n}k^i = 1+k+k^2+ \ldots + k^n = \frac{k^{n+1}-1}{k-1} </math>
Multipliserer vi så med <math>a_1</math> på begge sider, vil vi oppnå summeformelen, og beviset er ferdig.
Uendelige geometriske rekker
Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. Det vil si at summen av uendelig mange etterfølgende elementer i følgen har en endelig verdi.
I slike tilfeller er $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{i=1}^n a_i=\frac{a_1}{1-k}$