1T 2018 vår LØSNING: Forskjell mellom sideversjoner
Linje 61: | Linje 61: | ||
===Oppgave 8=== | ===Oppgave 8=== | ||
Bruker abc-formelen, a=1, b=k, c=4. | Bruker abc-formelen, a=1, b=k, c=4. | ||
$ | |||
$ x^2 +kx + 4 = 0 \\ x = \frac{-k \sqrt{k^2- 4 \cdot 1 \cdot 4}}{2 \cdot 1} $ | |||
===Oppgave 9=== | ===Oppgave 9=== |
Sideversjonen fra 30. jul. 2018 kl. 13:44
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
<math> \left[ \begin{align*}5x +2y =4 \\ 3x + 4y = -6 \end{align*}\right] </math>
Ganger første likning med -2 for å bruke addisjon, slik at y forsvinner.
<math> \left[ \begin{align*}- 10x - 4y = -8\\ 3x + 4y = -6 \end{align*}\right] </math>
Legger likningen sammen og får
$-7x = -14 \\ x=2$
Setter x = 2 inn i første likning og får at y er:
$5x+2y =4 \\ 10 + 2y = 4 \\ 2y = -6 \\ y = -3$
Løsning: $x= 2 \wedge y= -3$
Oppgave 2
$3 \cdot 10^x = 3000 \\ 10^x = 1000 \\ x lg 10 = lg 1000 \\ x \cdot 1 = lg 1000 \\ x = 3$
Oppgave 3
$ \frac{(0,5 \cdot 10^6)^2}{0,2 \cdot 10^{-4} + 3 \cdot 10^{-5}} = \frac{0,25 \cdot 10^{12}}{2 \cdot 10^{-5} + 3 \cdot 10^{-5}} = \frac{25 \cdot 10^{10}}{5 \cdot 10^{-5}} = 5 \cdot 10^{15} $
Oppgave 4
$\sqrt{15 }\cdot \sqrt5 - \sqrt{48} = \sqrt {3 \cdot 5 \cdot 5} -\sqrt{4 \cdot 4 \cdot 3 } = 5 \sqrt3 - 4 \sqrt 3 =\sqrt 3$
Oppgave 5
$lg1000 \cdot lg \sqrt[3]{10} \cdot lg \sqrt[5]{10^2} \cdot lg 0,00001 \\= lg10^3 \cdot lg10^{\frac{1}{3}} \cdot lg10^{\frac{2}{5}} \cdot lg10^{-5} \\ = 3 \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot (-5) = -2$
Oppgave 6
a)
$x (x+2) (x-4) = x (x^2-4x+2x-8) = x ( x^2 - 2x - 8) = x^3 -2x^2-8x$
b)
$x^3 -2x^2-8x = 0 \\ x (x+2) (x-4) = 0 \\ x=-2 \wedge x=0 \wedge x=4$
Oppgave 7
$ x^2-2x-8=0 \\ (x+2)(x-4)=0 \\ x=-2 \wedge x=4 $
$ x^2-2x-8 \geq 0 $ for $x<-2$ og $x>4$
Oppgave 8
Bruker abc-formelen, a=1, b=k, c=4.
$ x^2 +kx + 4 = 0 \\ x = \frac{-k \sqrt{k^2- 4 \cdot 1 \cdot 4}}{2 \cdot 1} $