1T 2017 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 54: Linje 54:
Nullpunkter:
Nullpunkter:


$ f(x)=0 \\ x^2-4x+3=0 \\ x= \frac{4 \pm \sqrt{16 - 4 \cdot 3}}{2} \\ x = $
$ f(x)=0 \\ x^2-4x+3=0 \\ x= \frac{4 \pm \sqrt{16 - 4 \cdot 3}}{2} \\ x = 1 \wee x= 3$


===b)===
===b)===

Sideversjonen fra 22. jun. 2017 kl. 14:43

Denne oppgaven som PDF

diskusjon av denne oppgaven

Løsning laget av mattepratbruker Lektor Nilsen

Løsning bidratt av Lektor Ørjan Augedal, Fana privat gymnas

Løsning laget av mattepratbruker rekel

Løsning laget av mattepratbruker mattemarkus


DEL EN

Oppgave 1

$\frac{0,72 \cdot 10^8}{60 \cdot 10^{-8}} = \frac{72 \cdot 10^6}{6 \cdot 10^{-7}} = 12 \cdot 10^{6+7} = 1,2 \cdot 10^{14}$

Oppgave 2

$4^0 + 2^{-3} \cdot (2^3)^2 = 1+ 2^3 = 9$

Oppgave 3

$\sqrt{20} + \sqrt 5 - \frac{\sqrt{160}}{\sqrt 2}= 2 \sqrt 5 +\sqrt 5 - \frac{\sqrt4 \cdot \sqrt4 \cdot \sqrt 2 \cdot \sqrt 5}{\sqrt 2} \\ 2 \sqrt 5 + \sqrt5 - 4 \sqrt 5 = - \sqrt 5$

Oppgave 4

Oppgave 5

Oppgave 6

Oppgave 7

Oppgave 8

Oppgave 9

Oppgave 10

a)

$f(x)>0 \Rightarrow x \in <4, \rightarrow>$

b)

$f´(x) >0 \Rightarrow x \in < \leftarrow,1> \cup <3, \rightarrow>$

Oppgave 11

a)

Nullpunkter:

$ f(x)=0 \\ x^2-4x+3=0 \\ x= \frac{4 \pm \sqrt{16 - 4 \cdot 3}}{2} \\ x = 1 \wee x= 3$

b)

c)

d)

e)

Oppgave 12