Initialbetingelser: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ny side: En initialbetingelse for en differensialligning er en føring som pålegges løsningen og som bestemmer verdiene til alle ukjente konstanter som opptrer i løsningen. == Initialverdiprobl...
 
Plutarco (diskusjon | bidrag)
Ingen redigeringsforklaring
Linje 1: Linje 1:
En initialbetingelse for en differensialligning er en føring som pålegges løsningen og som bestemmer verdiene til alle ukjente konstanter som opptrer i løsningen.
En initialbetingelse(også kalt startbetingelse) for en differensialligning er en føring som pålegges løsningen i "startøyeblikket" og som bestemmer verdiene til alle ukjente konstanter som opptrer naturlig i løsningen.




== Initialverdiproblem ==
== Initialverdiproblem ==


Et initialverdiproblem er en differensialligning med tilhørende initialbetingelser.  
Et initialverdiproblem er en differensialligning med tilhørende initialbetingelser. Dersom f(x) er den ukjente funksjonen i diff.ligningen vil typiske initialbetingelser være på formen <tex>f(0)=\alpha</tex> og <tex>f^,(0)=\beta</tex> etc. for gitte konstanter.  





Sideversjonen fra 5. feb. 2010 kl. 15:31

En initialbetingelse(også kalt startbetingelse) for en differensialligning er en føring som pålegges løsningen i "startøyeblikket" og som bestemmer verdiene til alle ukjente konstanter som opptrer naturlig i løsningen.


Initialverdiproblem

Et initialverdiproblem er en differensialligning med tilhørende initialbetingelser. Dersom f(x) er den ukjente funksjonen i diff.ligningen vil typiske initialbetingelser være på formen <tex>f(0)=\alpha</tex> og <tex>f^,(0)=\beta</tex> etc. for gitte konstanter.


Eksempel

La oss se på initialverdiproblemet <tex>f^,(x)=f(x)</tex> med initialbetingelsen <tex>f(0)=10</tex>. Løsningen av ligningen er <tex>f(x)=ce^x</tex>. Dersom denne skal passe med initialbetingelsen må <tex>f(0)=ce^0=c=10</tex>. Løsningen på initialverdiproblemet blir derfor <tex>f(x)=10e^x</tex>.