R2 2015 høst LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 40: | Linje 40: | ||
$V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 = $ | $V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 dx = 4 \pi [-e^{-x}]_0^{ln3} $ | ||
==Oppgave 4== | ==Oppgave 4== |
Sideversjonen fra 17. sep. 2016 kl. 16:01
DEL EN
Oppgave 1
a)
$f(x)= 5cos (2x) \\f´(x)= - 2 \cdot 5 sin(2x)= -10sin(2x)$
b)
$g(x) = x sin x \\ g´(x)= sinx + x cos x$
c)
$h(x)= 5e^{-x}sin(2x) \\ h´(x)= -5e^{-x}sin(2x) + 10e^{-x}cos(2x) = 5e^{-x}(2cos (2x)- sin(2x))$
Oppgave 2
a)
$\int\limits_0^2(x^2-2x+1)dx= [\frac 13x^3 - x^2+x]_0^2 = \frac 83 -4+2= \frac 23$
b)
$\int \frac{e^x}{(e^x+1)^2} dx$
Setter $u = e^x+1$ da blir $du=e^xdx$
Vi får da:
$\int \frac{1}{u^2} du = \int u^{-2} du = - u^{-1}+ c = -\frac{1}{e^x+1} + c$
Oppgave 3
$f(x) = 2e^{- \frac 12 x} \quad \quad x \in <0, ln3]$
$V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 dx = 4 \pi [-e^{-x}]_0^{ln3} $
Oppgave 4
a)
F´ (4) = f (4) = 1
b)
F(4) - F(1) = 6 - (-1) = 7