R2 2015 høst LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 17: | Linje 17: | ||
===c)=== | ===c)=== | ||
$h(x)= 5e^xsin(2x) \\ h´(x)= 10e^xcos(2x) + 5e^xsin(2x) = 5e^x(2cos(2x)+ sin(2x)$ | $h(x)= 5e^xsin(2x) \\ h´(x)= 10e^xcos(2x) + 5e^xsin(2x) = 5e^x(2cos(2x)+ sin(2x))$ | ||
==Oppgave 2== | ==Oppgave 2== |
Sideversjonen fra 17. sep. 2016 kl. 09:46
DEL EN
Oppgave 1
a)
$f(x)= 5cos (2x) \\f´(x)= - 2 \cdot 5 sin(2x)= -10sin(2x)$
b)
$g(x) = x sin x \\ g´(x)= sinx + x cos x$
c)
$h(x)= 5e^xsin(2x) \\ h´(x)= 10e^xcos(2x) + 5e^xsin(2x) = 5e^x(2cos(2x)+ sin(2x))$