R1 2016 vår LØSNING: Forskjell mellom sideversjoner
Linje 51: | Linje 51: | ||
==Oppgave 4== | ==Oppgave 4== | ||
==a)== | |||
$AB=AC=BC=6 \ cm$ | |||
$HB=\frac{1}{2}AB=3 \ cm$ | |||
$CH=\sqrt{(BC)^2-(HB)^2}=\sqrt{6^2-3^2} \ cm=\sqrt{27}=\sqrt{3^3} \ cm=3\sqrt{3} \ cm$ | |||
$CF=CE=\sqrt{(BC)^2+(BE)^2}=\sqrt{6^2+6^2} \ cm=\sqrt{2\cdot6^2} \ cm=6\sqrt{2} \ cm$ | |||
$HF=\sqrt{(CF)^2-(CH)^2}=\sqrt{72-27} \ cm=\sqrt{45} \ cm=\sqrt{9\cdot5} \ cm=3\sqrt{5} \ cm$ | |||
==b)== | |||
$\frac{AF}{AB}=\frac{3+3\sqrt{5}}{6}=\frac{3(1+\sqrt{5})}{2\cdot3}=\frac{1+\sqrt{5}}{2}=\phi$ | |||
==Oppgave 5== | ==Oppgave 5== |
Sideversjonen fra 20. mai 2016 kl. 13:59
DEL EN
Oppgave 1
a)
$f(x)=-3x^2+6x-4$
$f'(x)=-6x+6= -6(x-1)$
b)
$g(x)=5\ln(x^3-x)$
$g'(x)=\frac{5(3x^2-1)}{x^3-x}$
c)
$h(x)=\frac{x-1}{x+1}$
$h'(x)=\frac{x+1-(x-1)}{(x+1)^2}=\frac{2}{(x+1)^2}$
Oppgave 2
a)
$p(x)=x^3-7x^2+14x+k$
$p(x)$ er delelig med $(x-2)$ hvis og bare hvis $p(2)=0$
$p(2)=8-7\cdot4+14\cdot2+k=8-28+28+k=8+k$
$8+k=0$
$k=-8$
b)
c)
Oppgave 3
a)
$f(x)=x^2e^{1-x^2}$
$f'(x)=2xe^{1-x^2}+x^2\cdot-2xe^{1-x^2}=2xe^{1-x^2}(1-x^2)$
b)
c)
d)
Oppgave 4
a)
$AB=AC=BC=6 \ cm$
$HB=\frac{1}{2}AB=3 \ cm$
$CH=\sqrt{(BC)^2-(HB)^2}=\sqrt{6^2-3^2} \ cm=\sqrt{27}=\sqrt{3^3} \ cm=3\sqrt{3} \ cm$
$CF=CE=\sqrt{(BC)^2+(BE)^2}=\sqrt{6^2+6^2} \ cm=\sqrt{2\cdot6^2} \ cm=6\sqrt{2} \ cm$
$HF=\sqrt{(CF)^2-(CH)^2}=\sqrt{72-27} \ cm=\sqrt{45} \ cm=\sqrt{9\cdot5} \ cm=3\sqrt{5} \ cm$
b)
$\frac{AF}{AB}=\frac{3+3\sqrt{5}}{6}=\frac{3(1+\sqrt{5})}{2\cdot3}=\frac{1+\sqrt{5}}{2}=\phi$