Kvotient regel derivasjon-bevis: Forskjell mellom sideversjoner
Fra Matematikk.net
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 2: | Linje 2: | ||
$$ | $$ | ||
$f'(x)= \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} \\ \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \ | $f'(x)= \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} \\ \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x \cdot v(x+ \Delta x) \cdot v(x)} \\ $ |
Sideversjonen fra 5. jun. 2015 kl. 14:06
$$
$f'(x)= \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} \\ \lim_{\Delta x \rightarrow0} \frac{\frac{u(x+\Delta x)}{v(x+ \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x \cdot v(x+ \Delta x) \cdot v(x)} \\ $