2P 2013 vår ny LØSNING: Forskjell mellom sideversjoner
Linje 31: | Linje 31: | ||
b) | b) | ||
<table> | <table width="0"> | ||
<tr> | <tr> | ||
<th>Verdi x</th> | <th>Verdi x</th> |
Sideversjonen fra 27. mai 2013 kl. 11:28
Del 1
Oppgave 1
a)
Finn median:
Sorterer observasjonene: $1_{(1)} \;\; 1_{(2)} \;\; 1_{(3)} \;\; 2_{(4)} \;\; 2_{(5)} \;\; 3_{(6)} \;\; 3_{(7)} \;\; 4_{(8)} \;\; 5_{(9)} \;\; 5_{(10)}$
Finner antall observasjoner: $N = 10$
Finner midtpunktet: ${N + 1 \over 2} = {10 + 1 \over 2} = 5.5$
Fordi det er et partall antall observasjoner er medianen lik gjennomsnittet av de to verdiene som ligger på hver sin side av midtpunktet
Medianen er gjennomsnittet av verdiene nummer 5 og 6. ${2 + 3 \over 2 }= 2.5$
Finner gjennomsnitt:
Finner summen av observasjonsverdiene: $S=1+5+3+3+5+2+1+4+1+2=27$
Finner antall observasjoner: $N=10$
Gjennomsnittet er da: ${S \over N} = {27 \over 10} = 2.7$
Finn typetall:
Teller opp verdiene og lager en frekvenstabell:
Verdi $x$ | Frekvens $f$ |
---|---|
$1$ | $3$ |
$2$ | $2$ |
$3$ | $2$ |
$4$ | $1$ |
$5$ | $2$ |
Ser i tabellen og finner de hyppigst forekommende verdiene
Typetall(ene) er: 1
b)
Verdi x | Frekvens f | Kumulativ frekvens |
---|---|---|
1 | 3 | 3 |
2 | 2 | 3+2 = 5 |
3 | 2 | 5+2 = 7 |
4 | 1 | 7+1 = 8 |
5 | 2 | 8 + 2 = 10 |