Eksponentialfunksjonen: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 6: Linje 6:




• <tex> e^p \cdot e^q  = e^(p+q) </tex>
• <tex> e^p \cdot e^q  = e^{(p+q)} </tex>
   
   


• <tex> \frac{e^p}{e^q}  = e^(p-q) </tex>
• <tex> \frac{e^p}{e^q}  = e^{(p-q)} </tex>
   
   


(ep)r = epr<tex> (e^p)^q  = e^(p\cdot q) </tex>
• <tex> (e^p)^q  = e^{(p\cdot q)} </tex>
   
   
Nedenfor er det plottet noen forskjellige funksjonen der eksponentialfunksjonen inngår.
Nedenfor er det plottet noen forskjellige funksjonen der eksponentialfunksjonen inngår.

Sideversjonen fra 3. jul. 2011 kl. 12:41

Den naturlige eksponentialfunksjonen ex er definert som ex = y dersom, og bare dersom ln(y) = x for alle x der y > 0. ex skrives også exp (x). ln(x) og ex er inverse funksjoner og speiler hverandre om linjen y = x.

Dersom p og q er reelle tall og r er et rasjonalt tall har vi følgende:


• <tex> e^p \cdot e^q = e^{(p+q)} </tex>


• <tex> \frac{e^p}{e^q} = e^{(p-q)} </tex>


• <tex> (e^p)^q = e^{(p\cdot q)} </tex>

Nedenfor er det plottet noen forskjellige funksjonen der eksponentialfunksjonen inngår.