Bevis for derivasjon av tan(x): Forskjell mellom sideversjoner
Fra Matematikk.net
Ny side: Vi har: $tan(x)= \frac{sin(x)}{cos(x)} $ $tan'(x)= ( \frac{sin(x)}{cos(x)})' \\ = \frac{sin(x) \cdot sin(x) - (-cos(x) \cdot cos(x)}{cos^2(x)} $ |
Ingen redigeringsforklaring |
||
Linje 4: | Linje 4: | ||
$tan(x)= \frac{sin(x)}{cos(x)} $ | $tan(x)= \frac{sin(x)}{cos(x)} $ | ||
$tan'(x)= ( \frac{sin(x)}{cos(x)})' \\ = \frac{sin(x) \cdot sin(x) - (-cos(x) \cdot cos(x)}{cos^2(x)} $ | $tan'(x)= ( \frac{sin(x)}{cos(x)})' \\ = \frac{sin(x) \cdot sin(x) - (-cos(x) \cdot cos(x))}{cos^2(x)} \\ = \frac{sin^2(x) + cos^2(x)}{cos^2(x)} \\= tan^2(x) + 1 $ |
Sideversjonen fra 29. sep. 2017 kl. 09:35
Vi har:
$tan(x)= \frac{sin(x)}{cos(x)} $
$tan'(x)= ( \frac{sin(x)}{cos(x)})' \\ = \frac{sin(x) \cdot sin(x) - (-cos(x) \cdot cos(x))}{cos^2(x)} \\ = \frac{sin^2(x) + cos^2(x)}{cos^2(x)} \\= tan^2(x) + 1 $