Plan i rommet: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 5: Linje 5:




Dvs. at hver kvadruppel (a,b,c,d) svarer til et bestemt plan, og alle punkter (x,y,y) som tilfredsstiller ligningen vil være et punkt i dette planet.
Dvs. at hver kvadruppel (a,b,c,d) svarer til et bestemt plan, og alle punkter (x,y,z) som tilfredsstiller ligningen vil være et punkt i dette planet.





Sideversjonen fra 9. feb. 2010 kl. 18:06

Et plan i rommet er beskrevet ved ligningen


<tex>ax+by+cz=d</tex>


Dvs. at hver kvadruppel (a,b,c,d) svarer til et bestemt plan, og alle punkter (x,y,z) som tilfredsstiller ligningen vil være et punkt i dette planet.


Utledning av ligningen for planet

Lar vi vektoren <tex>\vec{n}=\frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c)</tex> være enhetsnormalvektoren til planet og vektoren <tex>\vec{r}=(x,y,z)</tex> være et punkt i planet, ser vi at skalarproduktet


<tex>\vec{n}\cdot\vec{r}=l</tex>


der <tex>l</tex> er avstanden fra origo til planet. Skriver vi ut denne ligninga og kaller <tex>\sqrt{a^2+b^2+c^2}l\equiv d</tex> får vi


<tex>ax+by+cz=\sqrt{a^2+b^2+c^2}l=d</tex>.