1T 2017 vår LØSNING: Forskjell mellom sideversjoner
Linje 64: | Linje 64: | ||
===c)=== | ===c)=== | ||
V finner den x verdi som gir f´(x) = 2. | |||
$f´(x) =2 \\ 2x-4 =2 \\ x=3$ | |||
Vi vet at f(3) = 0 | |||
Likningen for tangenten blir da: | |||
$y = ax + b \\ 0 = 2 \cdot 3 + b \\ b = -6$ | |||
y= 2x - 6 er likningen for tangenten med stigningstall 2. | |||
[[File:1T-17-1-10b-2.png]] | [[File:1T-17-1-10b-2.png]] |
Sideversjonen fra 22. jun. 2017 kl. 15:05
Løsning laget av mattepratbruker Lektor Nilsen
Løsning bidratt av Lektor Ørjan Augedal, Fana privat gymnas
Løsning laget av mattepratbruker rekel
Løsning laget av mattepratbruker mattemarkus
DEL EN
Oppgave 1
$\frac{0,72 \cdot 10^8}{60 \cdot 10^{-8}} = \frac{72 \cdot 10^6}{6 \cdot 10^{-7}} = 12 \cdot 10^{6+7} = 1,2 \cdot 10^{14}$
Oppgave 2
$4^0 + 2^{-3} \cdot (2^3)^2 = 1+ 2^3 = 9$
Oppgave 3
$\sqrt{20} + \sqrt 5 - \frac{\sqrt{160}}{\sqrt 2}= 2 \sqrt 5 +\sqrt 5 - \frac{\sqrt4 \cdot \sqrt4 \cdot \sqrt 2 \cdot \sqrt 5}{\sqrt 2} \\ 2 \sqrt 5 + \sqrt5 - 4 \sqrt 5 = - \sqrt 5$
Oppgave 4
Oppgave 5
Oppgave 6
Oppgave 7
Oppgave 8
Oppgave 9
Oppgave 10
a)
$f(x)>0 \Rightarrow x \in <4, \rightarrow>$
b)
$f´(x) >0 \Rightarrow x \in < \leftarrow,1> \cup <3, \rightarrow>$
Oppgave 11
a)
Nullpunkter:
$ f(x)=0 \\ x^2-4x+3=0 \\ x= \frac{4 \pm \sqrt{16 - 4 \cdot 3}}{2} \\ x = 1 \vee x= 3$
Nullpunkter (1,0) og (3,0).
b)
c)
V finner den x verdi som gir f´(x) = 2. $f´(x) =2 \\ 2x-4 =2 \\ x=3$
Vi vet at f(3) = 0
Likningen for tangenten blir da: $y = ax + b \\ 0 = 2 \cdot 3 + b \\ b = -6$
y= 2x - 6 er likningen for tangenten med stigningstall 2.