1T 2016 vår LØSNING: Forskjell mellom sideversjoner
Linje 58: | Linje 58: | ||
$f(1)= 1-5+3+4 = 3 \\ f(3)= 27 - 45+9+4 = -5$ | $f(1)= 1-5+3+4 = 3 \\ f(3)= 27 - 45+9+4 = -5$ | ||
$\frac{\ | $\frac{\Delta y}{\Delta x} = \frac {-5-3}{3-1} = -4$ | ||
==Oppgave 12== | ==Oppgave 12== |
Sideversjonen fra 29. mai 2016 kl. 13:09
Mer diskusjon av denne oppgaven
Løsning av denne oppgaven laget av mattepratbruker LektorH
DEL EN
Oppgave 1
Oppgave 2
Oppgave 3
Oppgave 4
Oppgave 5
a)
b)
Oppgave 6
Oppgave 7
Oppgave 8
Oppgave 9
a)
b)
c)
Oppgave 10
Vi observerer at graf A er den eneste som har et minimum for en negativ x verdi. 2x + 6 = 0 gir løsning for x = - 3, altså er
h(x) funksjonen til graf A.
Graf B har ingen nullpunkter : $b^2 - 4ac < 0$
Vi observerer at $x^2 -2x + 9=0$ ikke har noen løsning, altså er
f(x) funksjonen til graf B.
g(x) er da funksjonen til C.
Oppgave 11
a)
$f´(x)= 3x^2-10x+3 \\ f´(2)= 3\cdot 4 - 10 \cdot 2 +3 = -5$
b)
$f(1)= 1-5+3+4 = 3 \\ f(3)= 27 - 45+9+4 = -5$
$\frac{\Delta y}{\Delta x} = \frac {-5-3}{3-1} = -4$
Oppgave 12
a)
b)
Oppgave 13
Vi leser av figuren:
$cos 53^{\circ} \approx 0,6 \\ sin 53^{\circ} \approx 0,8$
Tangens:
$tan 53^{\circ} \approx \frac 86 \approx 1,33 $
Oppgave 14
a)
Funksjonen har ekstremalpunkter når den deriverte er null. For x = 0 og x = 4 er det tillfelle. x = 0 er et toppunkt fordi den deriverte skifter fra positiv til negativ verdi, og x = 4 er et bunnpunkt fordi den deriverte skifter fra negativ til positiv verdi.
b)
Likningen for en rett linje er y = ax + b
I punktet (2,-3) er den deriverte lik -2. Det gir y= -2x + b
Setter så punktet (2, -3) inn for x og y for å finne b: $ -3 = -2 \cdot 2 +b$ som gir b=1.
Likningen blir da:
y = -2x + 1