R2 2015 høst LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
|||
(24 mellomliggende versjoner av en annen bruker er ikke vist) | |||
Linje 2: | Linje 2: | ||
[http://matematikk.net/matteprat/download/file.php?id=764 Løsning laget av jonasgilje] | [http://matematikk.net/matteprat/download/file.php?id=764 Løsning laget av jonasgilje] | ||
[https://ndla.no/nb/node/160274?fag=98361 Løsningsforslag laget av NDLA] | |||
Linje 17: | Linje 19: | ||
===c)=== | ===c)=== | ||
$h(x)= 5e^ | $h(x)= 5e^{-x}sin(2x) \\ h´(x)= -5e^{-x}sin(2x) + 10e^{-x}cos(2x) = 5e^{-x}(2cos (2x)- sin(2x))$ | ||
==Oppgave 2== | ==Oppgave 2== | ||
Linje 23: | Linje 25: | ||
===a)=== | ===a)=== | ||
$\int\limits_0^2(x^2-2x+1)dx= [\frac 13x^3 - x^2+x]_0^2 = \frac 83 -4+2= \frac 23$ | |||
===b)=== | ===b)=== | ||
$\int \frac{e^x}{(e^x+1)^2} dx$ | |||
Setter $u = e^x+1$ da blir $du=e^xdx$ | |||
Vi får da: | |||
$\int \frac{1}{u^2} du = \int u^{-2} du = - u^{-1}+ c = -\frac{1}{e^x+1} + c$ | |||
==Oppgave 3== | |||
$f(x) = 2e^{- \frac 12 x} \quad \quad x \in <0, ln3]$ | |||
$V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 dx = 4 \pi [-e^{-x}]_0^{ln3} = -4 \pi(\frac {1}{e^{ln3}} - 1)=^{}ln3) =-4 \pi(\frac13 -1) = \frac{8 \pi}{3} $ | |||
==Oppgave 4== | |||
===a)=== | |||
F´ (4) = f (4) = 1 | |||
==b)== | |||
F(4) - F(1) = 6 - (-1) = 7 | |||
==Oppgave 5== | |||
==Oppgave 6== | |||
==Oppgave 7== | |||
==Oppgave 8== | |||
$y^2 \cdot y' = x, \quad \quad y(0)=2 \\ y^2 dy =x dx \\ \int y^2 dy = \int xdx \\ \frac 13y^3 = \frac 12 x^2 + C \\ y= \sqrt [3]{\frac 32x^2 + c}$ | |||
y( 0) = 2 gir C = 8 | |||
$y= \sqrt [3]{\frac 32x^2 + 8}$ | |||
==DEL TO== | ==DEL TO== |
Siste sideversjon per 27. mai 2018 kl. 04:01
DEL EN
Oppgave 1
a)
$f(x)= 5cos (2x) \\f´(x)= - 2 \cdot 5 sin(2x)= -10sin(2x)$
b)
$g(x) = x sin x \\ g´(x)= sinx + x cos x$
c)
$h(x)= 5e^{-x}sin(2x) \\ h´(x)= -5e^{-x}sin(2x) + 10e^{-x}cos(2x) = 5e^{-x}(2cos (2x)- sin(2x))$
Oppgave 2
a)
$\int\limits_0^2(x^2-2x+1)dx= [\frac 13x^3 - x^2+x]_0^2 = \frac 83 -4+2= \frac 23$
b)
$\int \frac{e^x}{(e^x+1)^2} dx$
Setter $u = e^x+1$ da blir $du=e^xdx$
Vi får da:
$\int \frac{1}{u^2} du = \int u^{-2} du = - u^{-1}+ c = -\frac{1}{e^x+1} + c$
Oppgave 3
$f(x) = 2e^{- \frac 12 x} \quad \quad x \in <0, ln3]$
$V = \pi \int\limits_0^{ln3}(2e^{- \frac 12x})^2 dx = 4 \pi [-e^{-x}]_0^{ln3} = -4 \pi(\frac {1}{e^{ln3}} - 1)=^{}ln3) =-4 \pi(\frac13 -1) = \frac{8 \pi}{3} $
Oppgave 4
a)
F´ (4) = f (4) = 1
b)
F(4) - F(1) = 6 - (-1) = 7
Oppgave 5
Oppgave 6
Oppgave 7
Oppgave 8
$y^2 \cdot y' = x, \quad \quad y(0)=2 \\ y^2 dy =x dx \\ \int y^2 dy = \int xdx \\ \frac 13y^3 = \frac 12 x^2 + C \\ y= \sqrt [3]{\frac 32x^2 + c}$
y( 0) = 2 gir C = 8
$y= \sqrt [3]{\frac 32x^2 + 8}$