Bevis og problemløsning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
nameless000
Fibonacci
Fibonacci
Posts: 2
Joined: 04/10-2022 17:38

2. På et bord står det to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, vil den andre beholderen akkurat bli fylt opp når du tømmer halvparten over i den. Den ene beholderen rommer 20 liter og er 30% full. Hvor mye rommer den andre?
Last edited by nameless000 on 06/10-2022 09:46, edited 1 time in total.
jos
Galois
Galois
Posts: 578
Joined: 04/06-2019 12:01

1.Hvis alle sidene i en rettvinklet trekant er heltallige, må de utgjøre et pytagoreisk trippel. De kan genereres ut fra formlene.

$ x = 2st$
$y = s^2 - t^2$
$z = s^2 + t^2$

Her er $s$ og $t$ heltall og $s\,$er partall hvis t er odde og omvendt. Arealet av trekanten blir $ 2st * (s^2 -t^2) * \frac{1}{2} = st * (s^2 - t^2)$ som er et heltall.
Mattebruker
von Neumann
von Neumann
Posts: 500
Joined: 26/02-2021 21:28

Meiner at framstillinga til Josi har ei svakheit. I beviset ditt tek du for gitt at eine kateten ( x = 2 s t ) er eit partal. Men dette er eigentleg ein påstand , og det er vel nett
denne påstanden som skal bevisast.
Mitt forslag: Anta at begge katetane er odde heiltal, og vis at denne premissen fører fram til at kvadratet av hypotenusen ikkje er eit kvadrattal.
jos
Galois
Galois
Posts: 578
Joined: 04/06-2019 12:01

s og t er heltall. Da må vel 2*s*t være et partall?

Her forutsetter jeg at uttrykkene

$x = 2st,
y = s^2 - t^2,
z = s^2 + t^2$

genererer alle (primitive) pytagoreiske tripler når s og t er heltall, s er odde hvis t er partall og omvendt og s er større enn t.
Last edited by jos on 04/10-2022 23:44, edited 1 time in total.
Mattebruker
von Neumann
von Neumann
Posts: 500
Joined: 26/02-2021 21:28

jos wrote: 04/10-2022 23:09 s og t er heltall. Da må vel 2*s*t være et partall?
Det har du heilt rett i , men for at beviset skal vere " vanntett " , må vi samtidig kunne utelukke den mulegheita at begge katetane er odde ( .. eller blir dette ei avsporing ? )
jos
Galois
Galois
Posts: 578
Joined: 04/06-2019 12:01

Ser ut som innleggene våre har krysset hverandre. Mitt poeng er at jeg forutsetter at formlene for generering av pytagoreiske tripler stemmer.
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

Det er ikke feil å bruke generering av alle pytagoreiske tripler, men påstanden kan også bevises vha motsigelse. Anta katetene begge er odde, og utled en motsigelse ved hjelp av pytagoras.
Mattebruker
von Neumann
von Neumann
Posts: 500
Joined: 26/02-2021 21:28

Gustav wrote: 05/10-2022 00:27 Det er ikke feil å bruke generering av alle pytagoreiske tripler, men påstanden kan også bevises vha motsigelse. Anta katetene begge er odde, og utled en motsigelse ved hjelp av pytagoras.
Josi har levert ei " vanntett" løysing. Ingen tvil om det ! Takk for sakleg og seriøs ordveksling.
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

Strengt tatt burde man vel sagt at gitt en pytagoreisk trekant med sider $a,b,c$ der $a^2+b^2=c^2$, fins positive heltall $k,m,n$ slik at $a=k(m^2-n^2), b=k(2mn), c=k(m^2+n^2)$ (eller at uttrykkene for $a$ og $b$ er byttet om), dermed er arealet gitt ved $A=\frac{ab}{2}=k^2(m^2-n^2)mn\in\mathbb{N}$.

Alternativt (bevis ved motsigelse): Anta at katetene $a,b$ begge er odde, så det fins heltall $m,n$ slik at $a=2n+1,b=2m+1$. Da er $c^2$ like, så $c$ er like, og $c=2k$ for heltall $k$. Fra pytagoras er $a^2+b^2=c^2$, så innsatt fås $(2n+1)^2+(2m+1)^2=(2k)^2$ som er det samme som at $4n^2+4n+1+4m^2+4m+1=4k^2$, som er ekvivalent med at $2\equiv 0\pmod 4$, en motsigelse. Dermed må minst én av katetene være like, og det følger at arealet er heltallig.
Mattebruker
von Neumann
von Neumann
Posts: 500
Joined: 26/02-2021 21:28

[tex]c^{2}[/tex] er like [tex]\Rightarrow[/tex] c er like ( denne implikasjonen er strengt tatt ikkje heilt triviell - må bruke kontrapositiv implikasjon )

"Vanntett" og profesjonell bevisføring !
jos
Galois
Galois
Posts: 578
Joined: 04/06-2019 12:01

Takk for utfordringer og informative innspill fra Gustav og Mattebruker!
For hva det er verdt; formlene jeg presenterte for generering av pytagoreiske tripler, gjelder tripler hvis største felles faktor = 1, noe jeg signaliserte ved i parantes å kalle triplene primitive.
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

jos wrote: 05/10-2022 12:03 Takk for utfordringer og informative innspill fra Gustav og Mattebruker!
For hva det er verdt; formlene jeg presenterte for generering av pytagoreiske tripler, gjelder tripler hvis største felles faktor = 1, noe jeg signaliserte ved i parantes å kalle triplene primitive.
Ja, skjønte det, men da bør det vel strengt tatt også argumenteres for at
primitive pytagoreiske trekanter har heltallig areal $\Rightarrow$ (alle) pytagoreiske trekanter har heltallig areal.
jos
Galois
Galois
Posts: 578
Joined: 04/06-2019 12:01

Argumentet for at "primitive pytagoreiske trekanter har heltallig areal => (alle) pytagoreiske trekanter har heltallig areal" er vel "intuitivt" som matematikkprofessoren sa etter å ha grunnet på et spørsmål fra en student i forlesningssalen en uke.
Post Reply