Page 1 of 1
matte 2
Posted: 03/03-2022 17:01
by seria
hei,
hvordan finner man grense på en slik oppgave?
Re: matte 2
Posted: 03/03-2022 19:50
by Kay
Konverter integralet til polarkoordinater. Du har en sirkel med radius 2 som går 360-grader rundt om aksene.
Re: matte 2
Posted: 04/03-2022 11:37
by seria
men jeg skjønner at radius er 2, men hvordan kommer man fram til grensen?
Re: matte 2
Posted: 04/03-2022 14:11
by jos
I polarkoordinater vil vinkelen $\theta$ gå fra 0 til $ \frac{\pi}{2}$ og radien r gå fra 0 til 2.
Re: matte 2
Posted: 04/03-2022 17:17
by seria
så integralen går fra 0 til 2pi så fra 0 til 2. det jeg får er 8rcosθ*sinθ, men vet ikke helt hvordan det skal være under brøkstreken. kan man ta kvadratrot av 9 så får man 3.x^2+y^2=r^2.
kunne jeg ha fått litt hint her?
Re: matte 2
Posted: 04/03-2022 18:01
by jos
$ 0$ til $\frac{\pi}{2}$
Re: matte 2
Posted: 04/03-2022 18:33
by seria
ja, men jeg sliter med å finne ut hvordan selve uttrykket som jeg skal integrere bli?
Re: matte 2
Posted: 04/03-2022 18:53
by Janhaa
seria wrote: 04/03-2022 17:17
så integralen går fra 0 til 2pi så fra 0 til 2. det jeg får er 8rcosθ*sinθ, men vet ikke helt hvordan det skal være under brøkstreken. kan man ta kvadratrot av 9 så får man 3.x^2+y^2=r^2.
kunne jeg ha fått litt hint her?
Nevner blir jo 3r
Re: matte 2
Posted: 04/03-2022 18:58
by Janhaa
seria wrote: 04/03-2022 17:17
så integralen går fra 0 til 2pi så fra 0 til 2. det jeg får er 8rcosθ*sinθ, men vet ikke helt hvordan det skal være under brøkstreken. kan man ta kvadratrot av 9 så får man 3.x^2+y^2=r^2.
kunne jeg ha fått litt hint her?
Hvis teller (har ikke sett på oppgava di) er 8 cos theta sin theta.
Bruk substitusjon, sin theta = u
Osv…
Re: matte 2
Posted: 05/03-2022 14:51
by seria
må den ikke bli 3r^2?
Re: matte 2
Posted: 05/03-2022 17:38
by Janhaa
seria wrote: 05/03-2022 14:51
må den ikke bli 3r^2?
[tex]x^2+y^2=r^2\\[/tex]
Så tar du kvadratrot av [tex]r^2[/tex]
Som er lik r