Page 1 of 1

Imaginære enheter

Posted: 18/08-2020 13:28
by hoyes127
Hei, trenger hjelp med en oppgave..

find the modulus r = |z| and the principalargument θ = Arg(z) of each given complex number z, and express z in terms of r and θ.

z=3i
Hva er fremgangsmåten??

Re: Imaginære enheter

Posted: 18/08-2020 14:58
by Hege Baggethun2020
Hei,

du kan tegne z = 3i i et såkalt Argand diagram, se om du har et kapittel i din litteratur som beskriver det. Det er veldig lurt - du får visuell trening og utvikler god intuisjon for hvor de komplekse tallene befinner seg i planet.

Lengden, dvs modulus av 3i er absoluttverdien av 3i, hvilket gir r = 3. I tillegg har tallet z = 3i ingen reell del, kun en imaginær del, dessuten er z = 3i positivt. Da kan z kun befinne seg på den positive imaginære aksen, som har vinkel pi/2. Så det prinsipielle argumentet theta er pi/2. Legg merke til at prinsipielt argument ikke alltid er det samme som argument, det kan være lurt å sette seg inn i det også :)

Så løsningen uttrykt vha r og theta blir da z = 3e^(i*pi/2)

Hilsen Hege.

PS. Tex-editor virker ikke akkurat nå, beklager litt dårlig presentert løsning..