La I være mengden av alle reelle tall x slik at x^2 <3.
a) Er mengden I nedtil begrenset? Svar: Nei.
b) Er mengden I opptil begrenset? Svar: Ja.
c) Hva er den største nedre og den minste øvre skrankene for I? Svar: Det finnes ingen største nedre skranke for I, (????) er minste øvre skranke. Tilsvarende for største nedre skranke.
For det første går jeg selvfølgelig ut fra at eksperten har rett, men jeg trenger hjelp til å forstå hvorfor. Jeg selv ville ment at I er (-kvadratroten til 3, kvadratroten til 3), og følgelig både er oppad begrenset og nedad begrenset. Altså at inf I er (- kvadratroten av 3) og sup I er kvadratroten av 3. Og at både inf I og sup I ikke er med i I.
For det andre forsvant tallet (????) i mailen, så vet ikke hva som stod der og jeg vil ikke mase mer

Kan noen fortelle meg hvorfor jeg tenker feil og hvilket tall (????) er?