Page 1 of 1
					
				Grenseverdier
				Posted: 29/01-2018 15:43
				by katten97
				Hvordan kan jeg bestemme grenseverdien til
lim x--> ∞  (x^5 - e^2x)/(700e^x + (lnx)^1000)
ved å bruke metoden om dominerende ledd?
Svaret skal bli -∞.
			 
			
					
				Re: Grenseverdier
				Posted: 29/01-2018 16:56
				by Mattebruker
				Eksponentialfunksjonen exp(x) dominerer over potensfunksjonen x[tex]^n[/tex] og ln-funksjonen når x går mot
    uendeleg. 
   Det betyr :
                      x går mot uendeleg impliserer at (x[tex]^5[/tex] - e[tex]^{2x}[/tex])/(700e[tex]^x[/tex] + (lnx)[tex]^{1000}[/tex])
                   er tilnærma lik (-e[tex]^{2x}[/tex] )/( 700e[tex]^x[/tex] ) = - e[tex]^x[/tex]/700 ( som går mot - uendeleg )
			 
			
					
				Re: Grenseverdier
				Posted: 29/01-2018 17:45
				by katten97
				Ok, da tror jeg at jeg forstår. Tusen takk 
