Gustav wrote:La $x,y,z$ være positive reelle tall slik at $x+y+z=2$.
Vis at $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac94 \leq \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}$
Wlog $x \leq y \leq z$.
Vi viser først at $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac92$:
Ettersom $x,y,z > 0$ og $x+y+z = 2$ har vi at $x,y < 1$.
Dersom $x \geq \frac13$ har vi at $y+z \leq \frac23$, så $y \leq \frac13$. Dermed får vi at $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 1 + 3 + \frac32 > \frac92 \checkmark$
Dersom $x < \frac13$ har vi at $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 3 + 1 + \frac12 = \frac92 \checkmark$
La $u = \frac{1}{x}, v=\frac{1}{y}, w = \frac{1}{z}.$ Vi ønsker å vise at $$u + v + w + \frac94\leq u^2 + v^2 + w^2.$$ Det vil si, $$\frac94\leq u(u-1) + v(v-1) + w(w-1).$$ Nå, vi har at $\frac{u-1}{u} + \frac{v-1}{v} + \frac{w-1}{w} = 3 - \frac{1}{u} - \frac{1}{v} - \frac{1}{w} = 3 - 2 = 1$. Dermed gir Cauchy-Schwarz:
$$ u(u-1) + v(v-1) + w(w-1) = \left[\frac{u-1}{u} + \frac{v-1}{v} + \frac{w-1}{w}\right]\left[ u(u-1) + v(v-1) + w(w-1)\right] = \left(u + v + w - 3\right)^2 \geq\left(\frac92 - 3\right)^2 = \frac94,$$
hvilket skulle vises.