Page 1 of 1
Rekke( VGS +)
Posted: 03/11-2016 18:27
by Kjemikern
Finn $\lim_{n\rightarrow \infty } \frac{1+2^2+3^3...(n-1)^{n-1}+n^n}{n^n}$
Re: Rekke( VGS +)
Posted: 08/11-2016 14:16
by Gustav
Kjemikern wrote:Finn $\lim_{n\rightarrow \infty } \frac{1+2^2+3^3...(n-1)^{n-1}+n^n}{n^n}$
Viser først at $\lim_{n\to\infty}\frac{1+2^2+3^3+...+(n-1)^{n-1}}{n^n}=0$:
$\frac{1+2^2+3^3+...+(n-1)^{n-1}}{n^n}<\frac{\int_{0}^{n} k^k\,dk}{n^n}$
Siden $\lim_{n\to\infty}\frac{\int_{0}^{n} k^k\,dk}{n^n}=\lim_{n\to\infty}\frac{(\int_{0}^{n} k^k\,dk)'}{(n^n)'}=\lim_{n\to\infty}\frac{n^n}{n^n(\log n+1)}=\lim_{n\to\infty}\frac{1}{\log n +1}=0$, følger påstanden. Dermed er
$\lim_{n\rightarrow \infty } \frac{1+2^2+3^3...(n-1)^{n-1}+n^n}{n^n}=1$