Page 1 of 1
overflate av glasscontainer
Posted: 25/03-2016 17:21
by Krile
Glasscontaineren er totalt 17 dm høy, halvkulen på toppen utgjør 7 dm
Fasiten er 1200 dm2
Jeg mener at oppgaven blir:
(4*3,14*49)/2+(3,14*14*10)+(3,14*49) = 901,18
Har jeg oversett noe?

Re: overflate av glasscontainer
Posted: 26/03-2016 15:01
by Dolandyret
Krile wrote:Glasscontaineren er totalt 17 dm høy, halvkulen på toppen utgjør 7 dm
Fasiten er 1200 dm2
Jeg mener at oppgaven blir:
(4*3,14*49)/2+(3,14*14*10)+(3,14*49) = 901,18
Har jeg oversett noe?

Hva er resten av målene på containeren? Hva mener du med at halvkulen "utgjør" 7 dm?
Re: overflate av glasscontainer
Posted: 27/03-2016 05:58
by ettam
Jeg prøver meg...men får ikke "fasitsvar".
Er denne "tanken" en sylinder med ei halvkule øverst. Der radiene i halvkula og og sylinderen er like store?
Overflaten av sylinderflaten er: [tex]O_{syl} = \pi r^2h[/tex]
Overflaten av halvkulen er: [tex]O_{h.kule} = {4 \pi r^2 \over 2}= 2 \pi r^2[/tex]
Sett inn [tex]r = 7dm \,\,[/tex] og [tex]\,\, h = 10 dm \,\,[/tex]
Og legg sammen de to overflatene.
Så til det viktigste her: Forstår du hvorfor du kan regne på denne måten?
Re: overflate av glasscontainer
Posted: 27/03-2016 10:52
by Krisle
Hmm har bilde av containeren, men skjønner ikke hvordan jeg skal få lastet det opp...
Det er en sylinder med en halvkule på toppen, radiusen på kulen er 7 dm og det må jo også radiusen til sylinderen være.
Jeg skjønner at jeg må regne overflaten av en sirkel og dele den på to i og med at det er en halvsirkel, så plusser jeg på overflaten av sylinderen og plusser til slutt på overflaten av bunnen.
Re: overflate av glasscontainer
Posted: 27/03-2016 14:31
by viking
Klarer ikke å laste opp..
Rett nedenfor her er en knapp som sier 'laste opp vedlegg'. imgur.com er greit også.
|
|
|
|
|
|
\/