Page 1 of 1
Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 20:13
by Guest
Hei, jeg lurer litt på denne oppgaven:
To små, like kuler henger i to like lange tynne isolerende tråder med samme opphengingspunkt. Hver av trådene er 60 mm lang, og massen av hver kule er 3,0 mg. Kulene har samme ladning q.
Hvilken verdi må q ha for at vinkelen mellom de to trådene skal være 60 grader når kulene er i ro?
Jeg har prøvd litt selv:
[tex]S_{x}=mgtan\alpha => 3mg*9,81tan30 => 0,017N
S_{y}=-mg
tan\alpha =60
r=2lsin\alpha => 2*60mm*sin60 =>0,104m F_{e}=K_{e}*\frac{q_{1}*q^{_{2}}}{K_{e}} => q^{2}=\frac{F_{e}*r^{2}}{K_{e}} q=\sqrt{\frac{0,017*0,104^{2}}{8,99*10^{9}}} =>1,43*10^{^{-7}}[/tex]
Dette er ikke riktig, og jeg lurte på om noen kunne hjelpe meg?
Jeg fikk ikke tex-editor til å funke... ups
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 20:16
by Guest
tex-editor ble verre enn jeg trodde. Håper det går an å se hvor det skal være mellomrom??
Sy =-mg
tan(alfa)=60
r=2*l*sin(alfa)
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 20:40
by Fysikkmann97
Ser du har funnet $S_x$ når vinkelen mellom de er 60 grader. Den kraften er også like stor som den elektriske frastøtingskraften, $F_e = \frac{kq^2}{r^2}$. Ser at vi må finne r, og det blir 2*MOT i trekanten ene kulen vil danne med vertikal. HYP er $60 mm = 60*10^{-3} m$. Da $\sin 30 = \frac{MOT}{60*10^{-3} m} \Leftrightarrow MOT = 60* 10^{-3} \sin 30 = 0,03 m$ Da blir r = 0,06m
$0,017 N = \frac{8,99*10^9*q^2}{(0,06m)^2} \Rightarrow q = \sqrt {\frac{0,017 N * (0,06 m)^2}{8,99*10^9}} = 8,3 * 10^{-8} C$. Vet ikke helt om dette stemmer, godt mulig det er noe feil i utregningen.
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:04
by Guest
Fasiten sier 2,6nC dessverre
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:12
by Fysikkmann97
Du kom frem til feil kraft for $G_x$ Bruk $G_x = 1,7*10^{-3}$ istedet

Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:29
by Guest
Fysikkmann97 wrote:Du kom frem til feil kraft for $G_x$ Bruk $G_x = 1,7*10^{-3}$ istedet

Kan du vise hva du tenker

Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:39
by Guest
Ser feilen min nå. Sx skal være 1,7*10-5 og ikke 0,01699
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:44
by Fysikkmann97
-3, ja
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 21:52
by Guest
Fysikkmann97 wrote:-3, ja
Nei, 3 mg til kg blir jo 3*10^-6.
Sx= mg*tan(alfa) => 3mg*9,81*tan30 =>1,7*10^-5
Da blir q = 2,6*10^-9 som er riktig i følge fasit.
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 02/02-2016 22:03
by Fysikkmann97
Korrekt, ved å bruke -3 får du 2,6 * 10^-8

Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 10/12-2016 15:37
by Neon
Gjest wrote:Fysikkmann97 wrote:-3, ja
Nei, 3 mg til kg blir jo 3*10^-6.
Sx= mg*tan(alfa) => 3mg*9,81*tan30 =>1,7*10^-5
Da blir q = 2,6*10^-9 som er riktig i følge fasit.
Hvordan vet man at alfa må være 30 grader her, og hvorfor kan man kan bruke g=9.81? Hvorfor fungerer det ikke å fine radius (avstanden mellom kulene) via cosinussetningen?
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 10/12-2016 21:04
by Fysikkmann97
Vinkelen er 30 grader fordi vinkelen mellom punktladningene totalt er 60 grader. Trekk en linje loddrett fra opphengingspunktet så får du to rettvinklede trekanter, og du kan bruke trigonometri. Hvorfor jeg ikke bruker cosinussetningen, som jeg ikke brukte noe særlig i FY2, er fordi jeg heller har brukt metoden jeg gjorde over.
Re: Fysikk 2, ladning, krefter og Coulombs lov
Posted: 11/12-2016 17:52
by Neon
Fysikkmann97 wrote:Vinkelen er 30 grader fordi vinkelen mellom punktladningene totalt er 60 grader. Trekk en linje loddrett fra opphengingspunktet så får du to rettvinklede trekanter, og du kan bruke trigonometri. Hvorfor jeg ikke bruker cosinussetningen, som jeg ikke brukte noe særlig i FY2, er fordi jeg heller har brukt metoden jeg gjorde over.
Så man bare deler 60 gradern i to fordi man deleler den store trekanten i to rettvinklede trekanter ettersom man har en likebent trekant? Og denne vinkelen i trekanten med lengdene kan man også bruke i trekanten man selv lager som viser snorkreftene? Hvordan vet man at vinkelen kan overføres på den måten slik at man kan bruke den også i snorkraft-trekanten? Trekanten med snorkrefter og trekanten med lengder er jo tross alt to forskjellige trekanter.