Page 1 of 1

Likhet

Posted: 21/07-2013 10:10
by Nebuchadnezzar
Gitt at $xy+yz+zx=1$, vis da at

$ \displaystyle \hspace{1cm}
\frac{x}{1+x^2} + \frac{y}{1+y^2} + \frac{z}{1+z^2}
=
\frac{ 2 }{ \sqrt{ (1+x^2)(1+y^2)(1+z^2) }\:}
$

Re: Likhet

Posted: 21/07-2013 16:38
by jhoe06
Godt mulig det finnes finere måter å gjøre dette på! :lol:

Vi har $ 1 = 1^2 = (xy + xz + yz)^2 = x^2 y^2 + x^2 z^2 + y^2 z^2 + 2(x^2 yz + x y^2 z + xy z^2 ) $
slik at $ 2(x^2 yz + x y^2 z + xy z^2 ) = 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 $.

Vi har også $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2)}{(1+x^2)(1+y^2)(1+z^2)} $$

Nå kan vi skrive $$ x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2) = \sqrt{(x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2))^2} $$
$$ = \sqrt{x^2 (1+y^2)^2 (1 + z^2)^2 + y^2 (1 + x^2)^2 (1 + z^2)^2 + z^2 (1+x^2)^2 (1 + y^2)^2 + 2 xy (1+x^2)(1+y^2)(1+z^2)^2 + 2 xz (1 + x^2)(1+y^2)^2(1+z^2) + 2yz(1+x^2)^2(1+y^2)(1+z^2)} $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{x^2(1+y^2)(1+z^2)}{1+x^2} + \frac{y^2(1+x^2)(1+z^2)}{1+y^2} + \frac{z^2(1+x^2)(1+y^2)}{1+z^2} + 2(xy + xz + yz) + 2(x^2yz + xy^2 z + xyz^2) \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{1 + x^2 - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + \frac{1 + y^2 - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + \frac{1 + z^2 - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 2 + 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( 1 + \frac{ - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + 1 + \frac{ - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + 1 + \frac{ - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 3 - \frac{x^2 y^2 - x^2 y^2 z^2}{1 + z^2} - \frac{x^2 z^2 - x^2 y^2 z^2}{1 + y^2} - \frac{y^2 z^2 + x^2 y^2 z^2}{1 + x^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 + \frac{-( y^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (y^2 z^2 + x^2 y^2 z^2)}{1 + x^2} + \frac{-(x^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 z^2 - x^2 y^2 z^2)}{1 + y^2} + \frac{-(x^2 y^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 y^2 - x^2 y^2 z^2)}{1 + z^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 - 2yz \frac{xy + xz + yz + x^2}{1 + x^2} - 2xz \frac{xy + xz + yz + y^2}{1+ y^2} - 2xy \frac{xy + xz + yz + x^2}{1+z^2} \bigg) } $$
$$ = \sqrt{4(1+x^2)(1+y^2)(1+z^2)} = 2\sqrt{(1+x^2)(1+y^2)(1+z^2)} $$

Da har vi $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{2\sqrt{(1+x^2)(1+y^2)(1+z^2)}}{(1+x^2)(1+y^2)(1+z^2)} = \frac{2}{\sqrt{(1+x^2)(1+y^2)(1+z^2)}} $$

Re: Likhet

Posted: 21/07-2013 18:54
by Nebuchadnezzar
Alternativt la $x = \tan A$, $y = \tan B$ og $z = \tan C$ ;)

Re: Likhet

Posted: 21/07-2013 22:04
by jhoe06
Ironisk nok var en slik substitusjon det første som falt meg inn. Dessverre så jeg ikke umiddelbart hvordan det gjorde problemet nevneverdig mye enklere, så jeg gikk heller for den grusomt stygge veien i steden.