Så langt henger jeg med fasiten:Use the Divergence Theorem [[tex]\phi = \oint\oint_S \vec{F}\cdot \vec{n}\,dS=\iiint_B\triangledown \cdot \vec{F}\,dV[/tex]] to calculate the flux of the given vector field out of the sphere S with equation [tex]x^2+y^2+z^2=a^2[/tex], where [tex]a> 0[/tex].
[tex]F=(x^2+y^2)\mathbf{i}+(y^2-z^2)\mathbf{j}+z\mathbf{k}[/tex]
[tex]\phi =\iiint_B\left [ \frac{\partial }{\partial x}\left ( x^2+y^2 \right )+\frac{\partial }{\partial y} \left ( y^2 -z^2\right )+\frac{\partial }{\partial z}z\right ]\,dV=\iiint_B\left ( 2x+2y+1\right )\,dV[/tex]
Men i følge fasiten er:
[tex]\iiint_B\left ( 2x+2y+1\right )\,dV=\iiint_B1\,dV[/tex]
Mitt spørsmål er: Hvordan kommer man fra [tex]2x+2y+1[/tex] til 1?
